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Abstract 

Reliable indices of population abundance are an important type of data for stock 

assessment. We applied a Vector-Autoregressive Spatio-Temporal Model (VAST) to conduct an 

index standardization by using the joint CPUE (catch-per-unit-effort) data of the Pacific Saury in 

the Northwest Pacific Ocean during 2001 and 2017. Furthermore, we provided a comparison of 

the CPUE standardization between VAST and the conventional generalized linear model. The 

objective is to make a suggestion for the appropriate specification of the joint CPUE index to be 

used in the future Pacific saury stock assessment. The results indicated that VAST performs 

better than the GLM with less residuals depart from zero and smaller residual variance. We 

recommend using VAST for deriving the standardized joint index as improved input data in the 

stock assessment. The analysis we presented is generally applicable and should be considered as 

a standard tool in the CPUE standardization. 

 

1. Introduction 

 

Standardization of commercial catch and effort data is important in fisheries where 

standardized abundance indices based on the fishery-dependent data are a fundamental input to 

stock assessments. The nominal CPUE (catch-per-unit-effort) index, derived from yearly means 

of the raw CPUE data, can be severely biased due to the fishing fleets in specific locales using 

gear that increases catchability, low fishing effort in areas which give inaccurate average CPUE, 

oceanography conditions that increase catchability by, for instance, making fish more vulnerable 

to fishing gear, or simply chance. The most commonly used standardization procedures entail the 

application of Generalized Linear Models (GLMs) or Generalized Additive Models (GAMs), 

which aim to isolate temporal abundance trends from the total variation in the CPUE data by 

adjusting for confounding effects on the estimated abundance trends (Guisan et al., 2002; 

Maunder and Punt, 2004).  

In addition, observations that occur closer in space are more likely to be similar (spatial 

autocorrelation), which makes it harder to distinguish the real signal of a spatial effect by an 



2 
 

explanatory variable. Recent years have seen the emergence of spatiotemporal modeling methods 

for standardizing CPUE data (e.g., Walter et al., 2014; Thorson et al., 2015; Kai et al., 2017; 

Grüss et al., 2019), because they allow the spatial autocorrelation to be removed, which may 

yield more precise, biologically reasonable, and interpretable estimates of abundance than 

common methods such as GLM (Shelton et al., 2014; Thorson et al. 2015). 

In view of the fact that there is a conflict among the standardized CPUE indices derived 

by members, the 3rd Technical Working Group on the Pacific Saury Stock Assessment (TWG 

PSSA) aim to develop a single joint CPUE index for the Pacific saury from the catch and effort 

data by all members (i.e., joint CPUE data). In this study, we apply a Vector-Autoregressive 

Spatio-Temporal Model (i.e., VAST, Thorson 2019) to conduct an index standardization by 

using the joint CPUE data of the Pacific saury in the Northwest Pacific Ocean during 2001 and 

2017. Furthermore, we provide a comparison of the CPUE standardization between VAST and 

the conventional model (i.e., GLM). The objective is to make a suggestion for the appropriate 

specification of the joint CPUE index to be used in the future Pacific saury stock assessment. 

Progress in joint standardized CPUE should result in better assessment and management of the 

stock. 

 

2. Materials and methods 

 

2.1 Joint CPUE dataset 

 The joint CPUE data of stick-held dip net fisheries was collected from each member 

including Chinese Taipei, China, Japan, Korea, Russia and Vanuatu in the North Pacific 

Fisheries Commission (NPFC). This dataset was aggregated by year and month with a spatial 

resolution of 1°×1° and covered the northwestern Pacific Ocean between 32 – 50 °N and 140 – 

171°E from 2001 to 2017. Data grooming was applied prior to the standardization to remove the 

monthly observation with less than 10 operation days. In total, 0.2% records have been removed. 

CPUE was defined as a catch of Pacific saury in metric ton per operating day fished. 

 

2.2  Conventional CPUE standardization  

We use a log offset GLM to standardize CPUE as the following description:  

1 1

log( ( , )) ~  ( ) ( ) ( , ) ( ) ( ) log( _ ( , ))
j k

n n

j j

j k

C s t YearMonth t cell s γ x s t λ k Q k Op day s t
= =

+ + + +   

where C(s,t) is the prediction of Pacific saury catch (in metric ton) in the 1°×1° cell s and year-

month t, YearMonth(t) is
 the fixed effect for each year-month t (131 time steps), cell(s) is the 

fixed effect for the 1°×1° spatial cell s (274 cells), jγ  represents the impact of covariate j (i.e., 

linear impact of SST, nj = 1; ) with value xj(s,t) on catch for cell s and year-month t. kλ is the 
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coefficient for the catchability covariate Q(k) (i.e., fleet, nk = 1), and  Op_day(s,t) is the fishing 

effort (operating day) as a log offset in cell s and year-month t. 

2.3  Geostatistical CPUE standardization 

The approach we used here is adapted from the R package VAST 

(https://github.com/James-Thorson-NOAA/VAST) developed by Thorson et al. (2015). VAST 

uses the Gaussian random fields to model the spatial autocorrelation with anisotropy (which 

means the relationship of spatial autocorrelation does not have to change at the same rate in all 

directions), and an interactive relationship between space and time (i.e., spatio-temporal 

autocorrelation). These Gaussian random fields are defined with a Matérn covariance function 

(see Thorson, 2019).  

VAST requires the previous definition of knots s which are points where the correlation 

of spatial and spatio-temporal effects are estimated. Each observation in the dataset then gets 

assigned to the knot which is the closest to them using the k-means. In this study, we used 100 

spatial knots (see Figure 1 for the configuration) to approximate the spatial and spatio-temporal 

autocorrelated variations.  

We give a brief description of how the VAST is applied to the Pacific saury joint CPUE 

dataset below and refer the readers to the original reference for more technical details (see also 

Thorson et al., 2019). The logarithm prediction of Pacific saury biomass density, p(s,t), in knot s 

and year-month t is described below: 

1 1

( , ) ( ) ( ) ( , ) ( , ) ( ) ( )
j k

n n

j j

j k

p s t β t ω s ε s t γ x s t λ k Q k
= =

= + + + +   

where ( )β t is the intercept for each year-month t as a fixed effect, ( )ω s is a time-invariant 

spatial autocorrelated variation for knot s (100 knots), and ( ),ε s t  is a time-varying spatial-

temporal autocorrelated variation for knot s and in year-month t (i.e., the interaction of spatial 

variation and time). jγ  represents the impact of covariate j (i.e., the linear impact of SST, nj = 1) 

with value xj(s,t) on density for knot s and year-month t. kλ is the coefficient for the catchability 

covariate Q(k) (i.e., fleet, nk = 1). 

 

2.4  Model diagnostics 

Histograms of the residuals were used to assess normality for the GLM and VAST, in 

addition, the quantile-quantile normal probability plots (Normal Q-Q plot) for both of them. For 

a better understanding of CPUE standardization of Pacific saury, the “step plots” (Bishop et al., 

2008) were conducted to understand the effects of removing individual factors from the GLM 

and VAST with respect to the estimated CPUE indices. 
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2.5  Standardized CPUE trends 

Predictions of standardized Pacific saury biomass density for observation i then excludes 

the value for the covariates linked to catchability, here is the fleet but otherwise retains the other 

predictors of density in space and time. The standardized index for GLM and VAST is 

respectively described as below: 

1) Conventional CPUE model (GLM) 

1

log( ( , )) = ( ) ( ) ( , )
jn

j j

j

C s t YearMonth t cell s γ x s t
=

+ +  

( ) ( , ) ( )B t C s t a s=   

where B(t) is the area re-weighted biomass density in year-month t throughout the population 

domain, a(s) is the area of the 1°×1° spatial cell s (110 km2).  

2) Geostatistical CPUE model (VAST) 

1

( , )) ( ) ( ) ( , ) ( , )
jn

j j

j

p s t β t ω s ε s t γ x s t
=

= + + +  

( ) exp( ( , )) ( )B t p s t a s=   

where B(t) is the area re-weighted biomass density in year-month t throughout the population 

domain, a(s) is the area of knot s. 

 

3.  Results and discussion 

 

3.1 Model diagnostic  

The histogram and Q-Q plots of both models based on the lognormal distributions appear 

normal in GLM and VAST for all fleets (Figs 2 and 3), which confirms the assumption of error 

distribution is appropriate for the CPUE standardization. Figure 4 shows that there is no 

significant residual pattern for each fixed effect in the GLM, except there are the larger residuals 

are found in the catchability effect for Chinese Taipei and Russia (Fig 4b). For the VAST, a 

similar result of the residual pattern was found (Fig. 5). However, Russia has larger negative 

residuals compared to other fleets. The results revealed that the VAST yielded higher R2 (0.59) 

than did the GLM (0.31). Generally, the VAST performed better than the GLM with less 

residuals depart from zero and smaller residual variance. 

  

3.2 Comparision of the standardized indices 

 Step plots provided a clear indication that there are incremental changes in the indices 

when effects were introduced into the GLM successively (Fig. 6). However, for the VAST, the 

knot variable has a major influence on standardized CPUE compared to the other effects (Fig. 7). 
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The estimated total biomass density value from GLM is lower than the VAST (Fig. 8a). 

Generally, the results of total biomass density from GLM and VAST showed similar trends 

across time (Fig. 8b).  

Although there is no clear difference in the annual trends of standardized CPUE indices 

between the GLM and VAST, we recommend using VAST for deriving the joint index to be 

used in the future Pacific saury stock assessment according to Grüss et al. (2019). The study has 

suggested that the spatio-temporal modeling platform VAST achieved the best performance by 

using the simulation testing, namely generally had one of the lowest biases, one of the lowest 

mean absolute errors, and 50% confidence interval coverage closest to 50%. Furthermore, we 

recommend using VAST from a practical standpoint that the regional weights, the year-quarter 

standardized indices, and the corresponding standard errors can be estimated directly as part of 

the modelling procedure, so no additional step is required to produce them (often not been 

reported). 
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Figure 1. Mesh used to fit the geostatistical model (VAST). An effect is estimated for 

each of the 100 core knots (black).The colored circles grouped by knots indicate the 

locations of spatial observations of the Pacific saury from 2001 to 2017 within the 1°×1° 

grid. 



8 
 

`

 

Figure 2. Diagnostic plots of the fitted GLM. The histogram of residuals (left) and Q-Q plot (right) from (a) Japanese fisheries by 

vessels of <100; (b) Japanese fisheries by vessels of >= 100; (c) Chinese Taipei; (d) Korea; (e) China; (f) Russia, and (g) Vanuatu 

fisheries.  
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Figure 3. Diagnostic plots of the fitted VAST. The histogram of residuals (left) and Q-Q plot (right) from (a) Japanese fisheries by 

vessels of <100; (b) Japanese fisheries by vessels of >= 100; (c) Chinese Taipei; (d) Korea; (e) China; (f) Russia, and (g) Vanuatu 

fisheries.  
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Figure 4. Boxplots of residuals by (a) cells, (b) fleets, and (c) year-month of the fitted GLM. JP1 is Japanese fisheries by vessels of 

<100; JP2 is Japanese fisheries by vessels of >= 100; CT is Chinese Taipei; KR is Korea; CN is China; RU is Russia, and VU is 

Vanuatu 
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Figure 5. Boxplots of residuals by (a) cells, (b) fleets, and (c) year-month of the fitted VAST. JP1 is Japanese fisheries by vessels of 

<100; JP2 is Japanese fisheries by vessels of >= 100; CT is Chinese Taipei; KR is Korea; CN is China; RU is Russia, and VU is 

Vanuatu. 
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Figure 6. Step plots showing the effects of removing individual factors from the GLM with respect to the estimated CPUE indices.  
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Figure 7. Step plots showing the effects of removing individual factors from the VAST with respect to the estimated CPUE indices. 
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Figure 8. Time-series of year-month (a) absolute, and (b) relative (relative to mean) 

standardized indices from the GLM (green points) and VAST (blue points) for the Pacific 

saury in Northwest Pacific Ocean from 2001 to 2017.  The blue polygon denote the 95% 

confidence intervals by VAST. 


