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Abstract 

Reliable indices of population abundance are an important type of data for stock 

assessment. We applied a Vector-Autoregressive Spatio-Temporal Model (VAST) to conduct 

index standardization by using the joint CPUE (catch-per-unit-effort) data of the Pacific saury in 

the Northwest Pacific Ocean during 2001 and 2019. The joint CPUE data of stick-held dip net 

fisheries was collected from each member including Chinese Taipei, China, Japan, Korea, 

Russia, and Vanuatu in the North Pacific Fisheries Commission (NPFC). Furthermore, we 

provided a comparison of the CPUE standardization between VAST and the conventional 

generalized linear model. The objective is to make a suggestion for the appropriate specification 

of the joint CPUE index to be used in the Pacific saury stock assessment. The results indicated 

that VAST performs better than the GLM with higher R2 value, less residuals depart from zero, 

and smaller residual variance. We recommend using VAST for deriving the standardized joint 

index as improved input data in the stock assessment. The analysis we presented is generally 

applicable and should be considered as a standard tool in the CPUE standardization. 

1. Introduction

Standardization of commercial catch and effort data is important in fisheries where 

standardized abundance indices based on the fishery-dependent data are a fundamental input to 

stock assessments. The nominal CPUE (catch-per-unit-effort) index, derived from yearly means 

of the raw CPUE data, can be severely biased due to the fishing fleets in specific locales using 

gear that increases catchability, low fishing effort in areas which give inaccurate average CPUE, 

oceanography conditions that increase catchability by, for instance, making fish more vulnerable 

to fishing gear, or simply chance. The most commonly used standardization procedures entail the 

application of Generalized Linear Models (GLMs) or Generalized Additive Models (GAMs), 

which aim to isolate temporal abundance trends from the total variation in the CPUE data by 

adjusting for confounding effects on the estimated abundance trends (Guisan et al., 2002; 

Maunder and Punt, 2004). In addition, observations that occur closer in space are more likely to 

be similar (spatial autocorrelation), which makes it harder to distinguish the real signal of a 

spatial effect by an explanatory variable. Recent years have seen the emergence of 
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spatiotemporal modelling methods for standardizing CPUE data (e.g., Walter et al., 2014; 

Thorson et al., 2015; Kai et al., 2017; Grüss et al., 2019), because they allow the spatial 

autocorrelation to be removed, which may yield more precise, biologically reasonable, and 

interpretable estimates of abundance than common methods such as GLM (Shelton et al., 2014; 

Thorson et al. 2015). 

 

Pacific saury (Cololabis saira), a migratory small pelagic fish, is widely distributed and 

migrate over extensive areas of the Northwestern Pacific Ocean. (Fukushima, 1979). This species 

is commercially important in the Northwestern Pacific Ocean, targeted by stick‐held dip net 

fisheries from several members of the North Pacific Fisheries Commission (NPFC) that the 

offshore fishing vessels by Japan and Russia operate mainly within the exclusive economic zones 

while the distant-water vessels of China, Korea, and Chinese Taipei operate mainly east of 

Hokkaido and the Kuril Islands in the Northwestern Pacific Ocean. In view of the fact that there 

is a conflict among the standardized CPUE indices derived by members, the 3rd Technical 

Working Group on the Pacific Saury Stock Assessment (TWG PSSA) aim to develop a single 

joint CPUE index for the Pacific saury from the catch and effort data by all members (i.e., joint 

CPUE data).  

 

In this study, we apply a Vector-Autoregressive Spatio-Temporal Model (i.e., VAST, 

Thorson 2019) to conduct an index standardization by using the joint CPUE data of the Pacific 

saury in the Northwest Pacific Ocean during 2001 and 2019. Furthermore, we provide a 

comparison of the CPUE standardization between VAST and the conventional model (i.e., 

GLM). The objective is to make a suggestion for the appropriate specification of the joint CPUE 

index to be used in the Pacific saury stock assessment. Progress in joint standardized CPUE 

should result in better assessment and management of the stock. 

 

2. Methods  

 

2.1 Joint CPUE dataset 

  

The joint CPUE data of stick-held dip net fisheries was collected from each member 

including Chinese Taipei, China, Japan, Korea, Russia and Vanuatu in the North Pacific Fisheries 

Commission (NPFC). This dataset was aggregated by year and month with a spatial resolution of 

1° × 1° and covered the northwestern Pacific Ocean between 32 – 50 °N and 140 – 174 °E from 

2001 to 2019. Data grooming was applied prior to the standardization to remove the monthly 

observation with less than 10 operation days. The spatial and temporal pattern of the nominal 
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CPUE data during 2001 and 2019 was shown in Figure 1.  

 

2.2 Conventional CPUE standardization  

 

We use a log offset GLM to standardize CPUE as the following description:  
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where C(si,ti) is the prediction of Pacific saury catch i (in metric ton) in the 1°×1° cell si and year-

month ti, Yearmonth(ti) is
 the fixed effect for each year-month ti (147 time steps), cell(si) is

 the 

fixed effect for the 1°×1° spatial cell si (294 cells), ( )γ j  represents the impact of covariate j (i.e., 

linear impact of SST, nj = 1) with value X(si, ti, j) on catch for cell si and year-month ti. Q(i,k) 

represent the catchability covariates that explain variation in catchability, λ(k) represent the 

estimated impact of catchability covariates for this linear predictor, and nk  represent the number 

of catchability covariates. In this study, only the fleet dummy variable was included in the model 

(nk = 1), andOp_day(si,ti) is the fishing effort (operating day) as a log offset in cell si and year-

month ti. The detail information of explanatory variables used in GLM in Table 1. The 

correlation matrix for these explanatory variables of GLM is shown in Figure. 2. 

 

2.3 Geostatistical CPUE standardization 

 

The approach we used here is adapted from the R package VAST 

(https://github.com/James-Thorson-NOAA/VAST) developed by Thorson et al. (2015). VAST 

uses the Gaussian random fields to model the spatial autocorrelation with anisotropy (which 

means the relationship of spatial autocorrelation does not have to change at the same rate in all 

directions), and an interactive relationship between space and time (i.e., spatio-temporal 

autocorrelation). These Gaussian random fields are defined with a Matérn covariance function 

(see Thorson, 2019). VAST requires the previous definition of knots s which are points where the 

correlation of spatial and spatio-temporal effects are estimated. Each observation in the dataset 

then gets assigned to the knot which is the closest to them using the k-means. In this study, we 

specify 100 spatial knots (see Figure 3 for the configuration) to approximate the spatial and 

spatio-temporal autocorrelated variations. We confirmed that our results are qualitatively similar 

when using various numbers of spatial knots (100, 150, and 200 knots) (see Appendix Figure 
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S1).  

 

We give a brief description of how the VAST is applied to the Pacific saury joint CPUE 

dataset below and refer the readers to the original reference for more technical details (see also 

Thorson et al., 2019). The logarithm prediction of Pacific saury CPUE, p(s,t), in knot s and year-

month t is described below: 

 

1 1
( ) ( ) ( ) ( , ) ( ) ( , , ) ( ) ( , )

j kn n
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where p(i) is the predictor for observation i,  iβ t is the intercept for each year-month ti as a 

fixed effect,  iω s is a time-invariant spatial autocorrelated variation for knot si (100 knots), and 

 ,i iε s t  is a time-varying spatial-temporal autocorrelated variation for knot si and in year-month 

ti (i.e., the interaction of spatial variation and time). ( )γ j  represents the impact of covariate j 

(i.e., the linear impact of SST, nj = 1) with value X(si,ti,j) on density for knot si and year-month ti. 

Q(i,k) are the fixed effects for catchability, λ(k) represent the estimated impact of catchability 

covariates for this linear predictor, and nk  represent the number of catchability covariates. In this 

study, only the fleet dummy variable was included in the model (nk = 1). The detail information 

of explanatory variables used in VAST was shown in Table 2. The correlation matrix for these 

explanatory variables of VAST is shown in Figure 4. 

 

2.4 Model selection and diagnostics 

 

We used the Akaike Information Criterion (AIC; Akaike, 1973) to identify which model 

had greater support given available data within the GLM and VAST. Histograms of the residuals 

were used to assess normality for the GLM and VAST, in addition, the quantile-quantile normal 

probability plots (Normal Q-Q plot) for both of them. For a better understanding of CPUE 

standardization of Pacific saury, the “step plots” (Bishop et al., 2008) were conducted to 

understand the effects of removing individual factors from the GLM and VAST with respect to 

the estimated CPUE indices. 

 

2.5 Standardized CPUE trends 

 

Predictions of standardized Pacific saury CPUE for observation i then excludes the value 

for the covariates linked to catchability, here is the fleet but otherwise retains the other predictors 

of density in space and time. The standardized index for GLM and VAST is respectively 

described as below: 
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2.5.1 Conventional CPUE model (GLM)  

 

Estimated values of fixed effects are used to predict the density (defined as catch weight 

per day) except the catchability variable.  

( , )

1

( , ) = exp ( ) ( ) ( , ) Ψ
jn
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where 
( , )ΨC s t

is a correction for bias (Bradu and Mundlak, 1970; Lo et al., 1992). Assuming 

lognormal-distributed errors, the correction factor is: 
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where gm is a function described below, 2ξ is the residual variance, m is degrees of freedom for 

the estimate of residual variance, η =
1
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  , and 2

ηξ  is the 

variance of η . The function gm is defined as: 
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where t is the argument for the function. Variance estimates for C(s,t) were calculated as: 
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Year-month density (B(t)) is calculated as the sum of density of each station:  

 

( ) ( , ) ( )B t C s t a s   

 

where B(t) is the area re-weighted density in year-month t throughout the population domain, 

a(s) is the area of the 1°×1° spatial cell s (12,100 km2). Annual density is calculated as the 

averaged density across the month. 
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2.5.2 Geostatistical CPUE model (VAST) 

 

Estimated values of fixed and random effects are used to predict the density p(s,t) except 

the catchability variable (Thorson et al., 2019). Year-month density, B(t), is calculated as the sum 

of density of each station (p(s,t)).   

1

( , ) ( ) ( ) ( , ) ( ) ( , , )
jn

j

p s t β t ω s ε s t γ j X s t j


     

( ) exp( ( , )) ( )B t p s t a s   

 

where B(t) is the area re-weighted density in year-month t throughout the population domain, 

a(s) is the area of knot s. Furthermore, year-month density was bias-corrected by using the 

“epsilon bias-correction estimator” (Thorson and Kristensen, 2016) to correct for 

retransformation bias. Annual density is calculated as the averaged density across the month. 

 

3. Results and discussion 

 

3.1 Model selection and diagnostic 

  

According to the AIC value, we used the most parameterized model (G-4 and V-4) of 

GLM and VAST to predict the year-month changes in CPUE of Pacific saury, respectively 

(Tables 3 - 4). The histogram and Q-Q plots of both models based on the lognormal distributions 

appear normal in GLM and VAST for all fleets (Figs. 5 and 6), which confirms the assumption 

of the error distribution is generally appropriate for the CPUE standardization. Figure 7 shows 

that there is no significant residual pattern for each fixed effect in the GLM. For the VAST, a 

similar result of the residual pattern was found (Fig. 8). The results revealed that the VAST 

yielded higher R2 (0.68) than did the GLM (0.32). Generally, the VAST performed better than the 

GLM with less residuals depart from zero and smaller residual variance. 

  

3.2 Comparison of the standardized indices 

  

Step plots indicated that the cell variable has a major influence on standardized CPUE 

compared to the other effects in GLM (Fig. 9). However, there are incremental changes in the 

indices when effects were introduced into the VAST successively (Fig. 10). The estimated year-

month relative density value from GLM and VAST were shown in Figure 11. Generally, the 

results of relative density from GLM and VAST showed the same trend across time. However, 
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the VAST model generated the lower model uncertainty compared to the GLM model. The 

annual relative density trend indicated there was a fluctuated pattern over studied periods (Fig. 

12). The relative density was at the lowest level below average (2001-2019) in 2019 in both 

models. The summary of year-month and annual standardized CPUEs by the GLM and VAST 

compared with the nominal CPUEs were shown in Figure 13 and Table 5. 

 

Although there is no clear difference in the annual trends of standardized CPUE indices 

between the GLM and VAST, we recommend using VAST in the future Pacific saury stock 

assessment according to the better performance in R2 and the estimated uncertainty in GLM over 

VAST. Previous study has also suggested that the spatio-temporal modeling platform VAST 

achieved the best performance among nine CPUE standardization methods by using the 

simulation testing, namely generally had one of the lowest biases, one of the lowest mean 

absolute errors, and the probability of the true index been included by the estimated 50% 

confidence interval is closest to 50% (Grüss et al., 2019). We also recommend using VAST from 

a practical standpoint that the regional weights, the year-quarter standardized indices, and the 

corresponding standard errors can be estimated directly as part of the modelling procedure, so no 

additional step is required to produce them (often not been reported). 
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Table 1. Summary of explanatory variables used in GLM. 

Variables Number of categories Detail 

Year-month t 147 t =1 (2001/May)  – t =147 (2019/Dec) 

Spatial cell Cell 294 32 – 50 °N and 140 – 174 °E in 1°×1° grid 

Sea surface 

temperature 
SST 1 Continues variable (3 -25 °C) 

Fleet Fleet 7 

JP1: Japanese vessel less than 100 GRT; 

JP2: Japanese vessel larger than 100 GRT; 

CT: Chinese Taipei; 

CN: China; 

RS: Russia; 

KR: Korea; 

VU: Vanuatu 
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Table 2. Summary of explanatory variables used in VAST. 

Variables 
Number of 

categories 
Detail Note 

Year-month t 147 
t =1 (2001/May)  – 

t =147 (2019/Dec) 
 

Spatial knot s 100 32 – 50 °N and 140 – 174 °E 
See Figure 

2 

Sea surface 

temperature 
SST 1 Continues variable (3 -25 °C)  

Fleet Fleet 7 

JP1: Japanese vessel less than 100 

GRT; 

JP2: Japanese vessel larger than 

100 GRT; 

CT: Chinese Taipei; 

CN: China; 

RS: Russia; 

KR: Korea; 

VU: Vanuatu 
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Table 3. Summary of the model selection information from GLM. 

Model No. Model structure 
Number of 

parameters 
Deviance AIC 

G-1 Year-month 147 8146 24329 

G-2 Year-month + Cell 440 7341 24015 

G-3 
Year-month + Cell + 

SST 
441 7334 24009 

G-4 
Year-month + Cell + 

SST + Fleet 
447 7094 23732 
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Table 4. Summary of the model selection information from VAST. 

Model No. Model structure 
Number of 

parameters 
Deviance AIC 

Maximum 

gradient 

V-1 Year-month 147 35939 71884 < 0.01 

V-2 

Year-month + 

Knot+Year-month 

and Knot 

150 35483 71270 < 0.01 

V-3 

Year-month + 

Knot+Year-month 

and Knot+SST 

152 35058 70423 < 0.01 

V-4 

Year-month + Knot + 

Year-month and Knot 

+ SST + Fleet 

159 34934 70206 < 0.01 
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Table 5. Annual relative (relative to mean) nominal and standardized indices from GLM and 

VAST for Pacific saury during 2001 and 2019 in the Northwestern Pacific Ocean. CPUE = 

standardized CPUE, SD = standard error, lower and upper = lower and upper limits of the 95% 

confidence intervals. 

Year Nominal  
GLM 

    
VAST 

  
CPUE SD Lower Upper CV CPUE SD Lower Upper CV 

2001 0.81 0.69 0.29 0.12 1.25 0.42 0.73 0.23 0.27 1.18 0.32 

2002 0.63 0.57 0.24 0.098 1.05 0.42 0.58 0.18 0.24 0.93 0.30 

2003 1.08 1.02 0.43 0.18 1.86 0.42 1.11 0.35 0.43 1.79 0.31 

2004 1.08 1.12 0.48 0.175 2.08 0.43 1.25 0.41 0.43 2.06 0.33 

2005 1.58 1.78 0.74 0.322 3.24 0.42 1.67 0.49 0.70 2.63 0.30 

2006 1.31 0.76 0.31 0.158 1.37 0.41 0.70 0.19 0.32 1.08 0.28 

2007 1.25 1.08 0.45 0.208 1.96 0.42 1.10 0.33 0.45 1.75 0.30 

2008 1.52 1.4 0.57 0.285 2.51 0.41 1.52 0.46 0.62 2.42 0.30 

2009 0.89 0.9 0.37 0.167 1.63 0.41 0.82 0.25 0.34 1.31 0.30 

2010 0.88 0.85 0.35 0.165 1.53 0.41 0.85 0.26 0.35 1.36 0.30 

2011 1.06 1.1 0.45 0.205 1.99 0.41 1.17 0.38 0.43 1.92 0.32 

2012 0.92 1 0.43 0.162 1.83 0.43 1.04 0.35 0.35 1.73 0.34 

2013 0.98 0.82 0.33 0.167 1.48 0.40 0.87 0.25 0.38 1.36 0.29 

2014 1.23 1.39 0.55 0.298 2.47 0.40 1.39 0.38 0.65 2.13 0.27 

2015 0.80 1.07 0.45 0.184 1.96 0.42 0.89 0.27 0.35 1.43 0.31 

2016 0.75 0.75 0.31 0.15 1.35 0.41 0.75 0.23 0.31 1.19 0.30 

2017 0.59 0.78 0.32 0.148 1.42 0.41 0.85 0.29 0.27 1.42 0.35 

2018 1.16 1.37 0.57 0.248 2.49 0.42 1.26 0.40 0.47 2.05 0.32 

2019 0.47 0.55 0.3 -0.032 1.14 0.55 0.45 0.11 0.23 0.67 0.25 
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Figure 1. Spatial and temporal distribution of the nominal CPUE (metric ton per 

operating day fished) of Pacific saury during 2001 and 2019 in the Northwestern Pacific 

Ocean. 
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Figure 2. Correlation matrix of explanatory variables used in GLM analysis. The blue 

curves in the upper triangular matrix denote the loess smooth curves. 
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Figure 3. Mesh used to fit the geostatistical model (VAST). An effect is estimated for 

each of the 100 core knots (black).The colored circles grouped by knots indicate the 

locations of spatial observations of the Pacific saury from 2001 to 2019 within the 1°×1° 

grid. 

 

  



17 

 

 

Figure 4. Correlation matrix of explanatory variables used in VAST analysis. The blue 

curves in the upper triangular matrix denote the loess smooth curves. 
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Figure 5. Diagnostic plots of the fitted GLM. The histogram of residuals (left) and Q-Q 

plot (right) from (a) Japanese fisheries by vessels of <100; (b) Japanese fisheries by 

vessels of >= 100; (c) Chinese Taipei; (d) Korea; (e) China; (f) Russia, and (g) Vanuatu 

fisheries.  
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Figure 6. Diagnostic plots of the fitted VAST. The histogram of residuals (left) and Q-Q 

plot (right) from (a) Japanese fisheries by vessels of <100; (b) Japanese fisheries by 

vessels of >= 100; (c) Chinese Taipei; (d) Korea; (e) China; (f) Russia, and (g) Vanuatu 

fisheries.  
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Figure 7. Boxplots of residuals from the GLM by (a) year-month, (b) fleets, and (c) cells 

of the fitted GLM. JP1 is Japanese fisheries by vessels of <100; JP2 is Japanese fisheries 

by vessels of >= 100; CT is Chinese Taipei; KR is Korea; CN is China; RU is Russia, and 

VU is Vanuatu. 
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Figure 8. Boxplots of residuals from the VAST by (a) year-month, (b) fleets, and (c) cells 

of the fitted GLM. JP1 is Japanese fisheries by vessels of <100; JP2 is Japanese fisheries 

by vessels of >= 100; CT is Chinese Taipei; KR is Korea; CN is China; RU is Russia, and 

VU is Vanuatu. 
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Figure 9. Step plots showing the effects of removing individual factors from the GLM 

with respect to the estimated CPUE indices.  
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Figure 10. Step plots showing the effects of removing individual factors from the VAST 

with respect to the estimated CPUE indices.  
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Figure 11. Time-series of year-month relative standardized indices (relative to mean) 

from the GLM (a) and VAST (b) for the Pacific saury in Northwest Pacific Ocean from 

2001 to 2019. The shaded areas denote the 95% confidence intervals.
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Figure 12. Time-series of annual relative standardized indices (relative to mean) from the 

GLM (a) and VAST (b) for the Pacific saury in Northwest Pacific Ocean from 2001 to 

2019. The shaded areas denote the 95% confidence intervals. 
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Figure 13. Time-series of year-month (a) and annual (b) relative standardized indices 

(relative to mean) from the GLM and VAST overlapped with the nominal CPUE (metric 

ton per operating day fished) for the Pacific saury in Northwest Pacific Ocean from 2001 

to 2019.
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Appendix S1. 

 
Figure S1. Comparisons of time-series of year-month standardized indices by using 

various numbers of spatial knots (n = 100, 150, and 200) in the VAST for the Pacific 

saury in Northwest Pacific Ocean from 2001 to 2019.  

  

 

 

 

 

 

 

 




