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Summary 

The Technical Working Group for Chub Mackerel Stock Assessment in NPFC has decided to use 

an operating model (OM) for comparing the performance of different four assessment model 

candidates. Japan has proposed tuned virtual population analysis (VPA) and state-space assessment 

model (SAM) as candidate stock assessment models. In this paper, we report the results on 

application of the two models to the merged data that has been shared among the members for OM 

development. Although the past estimates were close between VPA and SAM, the recent abundance 

estimates in VPA were greatly higher than those in the SAM and the recent fishing pressure was 

greatly lower in the VPA. Both models did not show serious retrospective biases and it is difficult 

to determine which model is better from this result. The simulation testing will be important for the 

choice of best stock assessment model and we should discuss specific scenario settings in the 

operating model framework. 

 

 

Note: Working document submitted to the NPFC 3rd Meeting of Technical Working Group on Chub 

Mackerel Stock Assessment, 11–14 November 2020. Document not to be cited without author’s 

permission. 
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Introduction 

The Technical Working Group on Chub Mackerel Stock Assessment (TWG CMSA) in NPFC 

determined that (1) the candidates of stock assessment models (VPA, ASAP, KAFKA, and SAM) 

would be compared by an operating model, and (2) the operating model would be based on 

POPSIM-A (NPFC 2019). POPSIM-A uses a stock assessment model as an operating model and, 

therefore, input data are needed for the development of operating models by fitting stock assessment 

model candidates (Deroba et al. 2014). Members in TWG CMSA (China, Japan, and Russia) 

respectively submitted potentially available data of chub mackerel and the merged data was 

distributed to the members (Nishijima 2020). Japan has proposed tuned virtual population analysis 

(VPA) and state-space assessment model (SAM) as candidates (Nishijima et al. 2018). Here we 

applied the two candidate models to the merged data and showed the methods and results.  

 

Model 

Virtual population analysis 

The VPA assumes no error in catch-at-age and conducts a backward calculation of population 

dynamics. We assumed that the age structure was from 0 to 6+ and used the Pope’s approximation 

(Pope 1972) to estimate fish numbers and fishing mortality coefficients: 

𝑁𝑎,𝑦 =  𝑁𝑎+1,𝑦+1 exp(𝑀𝑎) + 𝐶𝑎,𝑦 exp (
𝑀𝑎

2
) ,  if a ≤ 4 (1) 

𝑁5,𝑦 =
𝐶5,𝑦

𝐶5,𝑦 + 𝐶6+,𝑦
𝑁6+ exp(𝑀5) + 𝐶5,𝑦exp (

𝑀5

2
) , 

 
(2) 

𝑁6+,𝑦 =
𝐶6+,𝑦

𝐶5,𝑦 + 𝐶6+,𝑦
𝑁6+ exp(𝑀6) + 𝐶6+,𝑦exp (

𝑀6

2
) , 

 
(3) 

where Na,y is the fish number at age a in year y and Ca,y is the catch at age at age a in year y, and Ma 

is the natural mortality coefficients at age a. We here used Ma = 0.41 for all age classes because this 

value was the median of various M estimators (Takahashi et al. 2018). The fish numbers in the 

terminal year (2019) was calculated from the fishing morality coefficients in the terminal year:  

𝑁𝑎,2019 =  
𝐶𝑎,2019 exp (

𝑀𝑎

2 )

1 − exp (−𝐹𝑎,2019)
 .  (4) 

The fishing mortality coefficients except for the terminal year were computed from  
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𝐹𝑎,𝑦 = − log {1 −
𝐶𝑎,𝑦

𝑁𝑎,𝑦
exp (

𝑀𝑎

2
)}  .  (5) 

We also assumed that the fishing mortality coefficient of plus group (A+) were identical to that of 

A−1: 

𝐹6+,𝑦 = 𝐹5,𝑦 .  (6) 

We used ‘ridge VPA’ to stabilize the terminal F estimates, which included a ridge penalty (squared 

term of estimated parameters) in the optimization, i.e., penalized likelihood (Okamura et al. 2017): 

minimize     (1 − 𝜆) ∑ ∑ [
ln(2𝜋𝜈𝑘

2)

2
+ 

{ln(𝐼𝑘,𝑦) − ln(𝑞𝑘𝑋𝑘,𝑦
𝑏𝑘 )}

2

2𝜈𝑘
2 ]

𝑦𝑘
+ 𝜆 ∑ 𝐹𝑎,2019

2  ,

5

𝑎=0

 (7) 

 where λ is the penalty coefficient (0 ≤ 𝜆 < 1), Ik,y is the value of index k in year y, 𝜈𝑘
2 is the 

variance of index k, qk is the proportionality constant, and bk is the nonlinear coefficient between 

index k and its associated estimates Xk. We used the four indices from Japan (fleet no.2-5), because 

their association with abundance estimates are clear (two for recruitment and two for SSB), whilst 

the usages of other members’ indices are unclear (Nishijima et al. 2020). We estimated bk,y to treat 

hyperstability or hyperdepletion. We selected the penalty coefficient (λ = 0.85) so as to minimize 

the absolute value of Mohn’s rho (Mohn 1999) of average fishing mortality coefficient in the five-

year retrospective analysis: 

𝜌 =  
1

5
∑ (

�̂�2019−𝑖
𝑅 − �̂�2019−𝑖

�̂�2019−𝑖

)

5

𝑖=1

 , (8) 

where �̂�2019−𝑖 is the estimate of average fishing mortality coefficients in year 2019−i using the full 

data and �̂�2019−𝑖
𝑅  is the corresponding estimate when removing the data after 2019−i. Therefore, 

the ridge VPA can reduce a retrospective bias to some extent. 

 

State-space assessment model 

The basic model structure of SAM followed the original one (Nielsen and Berg 2014). 

Numbers at age a in year y are described as: 

log(𝑁0,𝑦) = log(𝑁0,𝑦−1) + 𝜂0,𝑦,   (9) 
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log(𝑁𝑎,𝑦) = log(𝑁𝑎−1,𝑦−1) − 𝐹𝑎−1,𝑦−1 − 𝑀𝑎−1,𝑦−1 + 𝜂𝑎,𝑦,    1 ≤ a ≤ 5 (10) 

log(𝑁6+,𝑦) = log(𝑁5,𝑦−1𝑒−𝐹5,𝑦−1−𝑀5,𝑦−1

+ 𝑁6+,𝑦−1𝑒−𝐹6+,𝑦−1−𝑀6+,𝑦−1) + 𝜂6+,𝑦 , 

 
(11) 

where 𝜂𝑎,𝑦 is the process error at age a in year y. We assumed different magnitudes of the process 

errors for age 0 and older: 𝜂0,𝑦~𝑁(0, 𝜔𝑅
2 ), 𝜂𝑎,𝑦~𝑁(0, 𝜔𝑆,𝑎

2 ) (a > 0). We fixed the variance for the 

ages older than 0 at a small value (𝜔𝑆,𝑎
2 = 0.0001) because of a failure to converge when estimating 

this parameter. 

The fishing mortality coefficient was assumed to follow the multivariate random walk: 

log (𝑭𝒚) = log (𝑭𝒚−𝟏) + 𝝃𝑦 , if 𝑦 ≠ 2011 (12) 

where 𝑭𝒚 = (𝐹1,𝑦, … , 𝐹𝐴+,𝑦)𝑇 , 𝝃𝒚~MVN(0, 𝚺) , and 𝚺  is the variance-covariance matrix of 

multivariate normal distribution (MVN). The diagonal elements of matrix 𝚺 were 𝜎𝑎
2, while off-

diagonal elements were assumed to be 𝜌|𝑎−𝑎′|𝜎𝑎𝜎𝑎′  (a ≠ a’). 𝜌|𝑎−𝑎′|  corresponded to the 

correlation coefficient of F between ages a and a’, and this assumption reflected the decrease in 

correlation with increasing age difference. In addition, we assumed 𝐹6+,𝑦 = 𝐹5,𝑦 in accordance 

with tuned VPA. The random walk was omitted in 2011 because the fishing effort on chub mackerel 

possibly greatly decreased since the previous year because of the Great East Japan Earthquake and 

tsunami in March 2011. We found positive retrospective bias in stock abundance and negative bias 

in fishing mortality if assuming a random walk in 2011 (Fig. 1). 

     The SAM estimated the errors in catch-at-age in a lognormal fashion: 

log(𝐶𝑎,𝑦) = log (
𝐹𝑎,𝑦

𝐹𝑎,𝑦 + 𝑀𝑎,𝑦
(1 − exp(−𝐹𝑎,𝑦 − 𝑀𝑎,𝑦))𝑁𝑎,𝑦) + 𝜀𝑎,𝑦 

(13) 

where 𝜀𝑎,𝑦~N(0, 𝜏𝑎
2). We used the four indices from Japan in the same way as the VPA: 

log(𝐼𝑘,𝑦) = log(𝑞𝑟𝑋𝑦
𝑏𝑘) + 𝜂𝑘,𝑦 , 

(14) 

where 𝜂𝑘,𝑦 is the measurement error of index k in year y: 𝜂𝑘,𝑦~𝑁(0, 𝜈𝑘
2). 

The SAM has to estimate many parameters. We then imposed the following limitations to 

stability estimation and avoid overfitting:  

𝜔𝑆,𝑎 = 𝜔𝑆  (∀𝑎 (𝑎 > 0)) ,   (15) 

𝜎0 = 𝜎1, 𝜎2 = 𝜎3 = ⋯ = 𝜎𝐴 ,   (16) 
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𝜏2 = 𝜏3, 𝜏5 = 𝜏6+. 
 

(17) 

These limitations were determined based on the Akaike information criteria (AIC).  

In contrast to VPA, SAM regard state variables, such as numbers at age and F at age, as latent 

random variables, which requires complex, difficult numerical integral calculation for many 

random effects. We therefore used Template Model Builder (TMB: Kristensen, Nielsen, Berg, 

Skaug, & Bell, 2016), an R package which enables fast computation for latent variable models. We 

also made bias correction of mean values because random effects were estimated by logarithmic 

scale (Thorson and Kristensen 2016).  

 

Stock-recruitment relationship and MSY reference point 

     We estimated the Hockey-Stick (HS) stock-recruitment relationship using estimated 

spawning stock biomass and the number of recruits. We used the HS relationship because we have 

used this stock-recruitment relationship in the domestic stock assessment. The HS relationship is 

useful to a feasible biological reference points based on maximum sustainable yield (MSY) when 

the stock has an extreme stock-recruitment relationship, i.e., too low or high steepness (Ichinokawa 

et al. 2017). We deterministically calculated MSY-based reference points using biological 

parameters (natural mortality coefficient, maturity at age, and weight at age) in recent five years 

(2015-2019). We then described a Kobe plot that shows the status of fishing impacts and spawning 

stock biomass.  

 

Sensitivity analyses 

We conducted two kinds of sensitivity analyses to examine the effects of data uncertainties 

and model assumptions. First, we analyzed the SAM with the Beverton-Holt relationship (Appendix 

A). Second, we analyzed VPA and SAM with age-specific natural mortality coefficients (Appendix 

B). Both results are shown in Appendices. 

 

Results and Discussion 

     Although the past estimates of biomass, SSB, and recruitment were close between VPA and 

SAM, the recent abundance estimates were greatly higher in the VPA than those in the SAM (Figs. 

2, 3). The fishing mortality coefficients of VPA in recent years were oppositely lower than those of 

SAM (Figs. 2, 3). The percent SPR corresponding to the fishing mortality for the most recent five 
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years (2015-2019) was 54.4% on average (44.38-65.23%) in VPA, but 39.6% on average (35.9-

48.0%) in the SAM. Accordingly, the SAM obtained more pessimistic results than the VPA. In 

addition, the uncertainties in recent estimates were much larger in the VPA than in the SAM (Fig. 

3). The selectivity was highly variable in the VPA, but this variability was smoothed in the SAM 

(Fig. 4). The SAM estimated a larger variance of fishing mortality process (𝜎𝑎
2) at ages 0 and 1 than 

that at older ages and a strong correlation between neighbor ages (Table 1).  

     The difference of estimates between models can be explained by the fitting pattern of tuning 

indices. For the recruitment indices the nonlinear coefficients (bk) were lower in the VPA than in 

the SAM, although the magnitudes of measurement errors (𝜈𝑘 ) little differed (Table 2). This causes 

the recruitment estimates in recent years higher in the VPA than in the SAM (Fig. 5). Especially, 

the VPA fitted better to the highest values of recruitment indices in 2018 than the SAM (Figs. 6-7), 

causing the extremely strong year classes of 2018 (Figs 2-3). On the other hand, the fitting to SSB 

indices was better in the SAM than in the VPA (Table 1, Fig. 5). Moreover, the recent SSB estimates 

in the VPA were higher than expected from the indices (Fig. 6) and the higher autocorrelation of 

residuals was found in the VPA than in the SAM (Fig. 7). It is noteworthy that the SSB indices 

peaked out in recent three or five years (Fig. 5). However, the VPA showed a worse fitting to the 

SSB indices and estimated a continuous increase in SSB (Figs. 2-3). This worse fitting in the VPA 

was partly because the ridge penalty impaired the fitting instead of improved retrospective bias. In 

contrast to the deterministic calculation of fish population dynamics under the assumption of no 

error in catch-at-age, however, SAM estimates observation errors in catch-at-age (Figs. 8-9) and 

process errors in population dynamics, which can improve the fitting of indices in comparison to 

VPA. As a result, the VPA estimates were greatly affected by the recruitment indices, whereas the 

SAM estimates were greatly affected by the SSB indices, leading to the lower abundances and 

higher fishing impacts in the SAM than in the VPA.  

     Both models did not show serious retrospective biases in the estimates of abundances and 

fishing mortality (Figs. 10-11). Thus, the retrospective analysis did not inform us of inferior-to-

superior relationship between SAM and VPA, although the estimated values were quite different. 

     Estimated HS relationships were quite different between VPA and SAM because the shape of 

HS relationship in VPA was largely affected by the extremely high values of SSB in the latest two 

years (Fig. 12). However, the steepness was estimated at around 0.70 for both models (Table 3). 

Although the absolute values of MSY reference points (MSY, SSBMSY, and BMSY) were much higher 

in the VPA than in the SAM because of the different HS relationships, the relative values of MSY-
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reference points to B0 (virgin stock) reference points (%SPRMSY, SSBMSY/SB0) were robust 

between the models (Table 3). Kobe plots were a bit different between models; SSB exceeded 

SSBMSY only in the latest two years in the VPA, whereas SSB was also higher than SSBMSY not 

only in the latest three years but also the 1970s for the SAM (Figs. 13-14). Both models estimated 

to be not overfishing (F < FMSY) nor overfished (SSB > SSBMSY) in the latest year (2019). 

     NPFC TWG-CMSA has determined that the choice of stock assessment model will be 

committed to the operating model using POPSIM-A (NPFC 2019). We will be able to simply 

generate simulation data from the fitting of data in both models, because the POPSIM-A uses a 

stock assessment model as an operating model (Deroba et al. 2014). For SAM, the simulated data 

on abundance indices and catch-at-age are generated from the equations 12 and 13. For VPA, 

however, the catch-at-age data is assumed to be correct and has no need to simulate; only the data 

of abundance indices should be simulated.  

     SAM can be extended to a model that allows multi-fleets and missing values, which is an 

advantage. However, VPA cannot deal with multi-fleets and, therefore, we should consider how to 

use multi-fleet data in the cross testing in which simulation and assessment models are different 

(Deroba et al. 2014). We should determine specific approaches and scenario settings to facilitate 

the stock assessment of chub mackerel in the Northwestern Pacific Ocean. 
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Tables 

Table 1: Estimates of parameters of fixed effects in VPA and SAM. Parameter estimates associated 

with abundance indices are shown in Table 2. 

Para 

meter 

Not age- 

specific 

Age (a) 

0 1 2 3 4 5 6+ 

VPA        

F2019 - 0.09  0.01  0.05  0.03  0.13  0.37  0.37  

SAM        

σa - 0.44  0.44  0.32  0.32  0.32  0.32  0.32  

ρ 0.92 - - - - - - - 

ωa - 0.73  0.01  0.01  0.01  0.01  0.01  0.01  

τa - 0.88  0.63  0.30  0.30  0.43  0.69  0.69  

 

 

Table 2: Estimates of parameters associated with the abundance indices in VPA and SAM. 

Fleet 
qk bk υk 

VPA SAM VPA SAM VPA SAM 

2 6.90×10−6 5.05×10−7 1.22  1.60  1.17  1.23  

3 1.01×10−7 2.27×10−8 1.38  1.92  0.77  0.82  

4 5.93×10−6 5.83×10−7 0.78  1.10  0.73  0.59  

5 5.04×10−5 2.65×10−4 0.45  0.63  0.31  0.31  

 

 

Table 3: MSY-based reference points for different models and stock-recruitment relationship. 

Model SR Reference 
Catch 

(1000 ton) 

Biomass 

(1000 ton) 

SSB 

(1000 ton) 

Exploit. 

rate 
SPR0 Steepness 

VPA HS 

MSY 1836 9250 3270 0.20 69 0.70 

B0 0 17985 11047 0.00 443 - 

MSY2B0 - 0.51 0.30 - 0.16 - 

SAM 

(RW)* 
HS 

MSY 573 2969 1072 0.19 77 0.69 

B0 0 5675 3486 0.00 443 - 
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MSY2B0 - 0.52 0.31 - 0.17 - 

SAM 

(BH)§ 
BH 

MSY 2283 24450 12085 0.09 79 0.44 

B0 0 51292 31507 0.00 443 - 

MSY2B0 - 0.48 0.38 - 0.18 - 

* RW means the random walk of recruitment process 

§ BH means the Beverton-Holt stock-recruitment relationship whose results are shown in Appendix 

A. 
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Figures  

 

Figure 1: Retrospective pattern of SAM assuming the random walk of fishing mortality coefficients 

in 2011. Mohn’s rho is shown in the upper-left side. 
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Figure 2: Time series of estimates of total biomass (thousand ton), SSB (thousand ton), recruitment 

(billion), and average fishing mortality coefficient of SAM and VPA. Confidence intervals are 

omitted from this figure because the intervals in the latest year of VPA are too large to plot (see Fig. 

3). 
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Figure 3: Time series of estimates of total biomass (thousand ton), SSB (thousand ton), recruitment 

(billion), and average fishing mortality coefficient of SAM and VPA at logarithmic scale. The 

shadows represent 95% confidence intervals estimated from the delta method. 
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Figure 4: Time series of selectivity estimates of SAM (left) and VPA (right). Selectivity is scaled 

so that the total value is equal to one. 

 

 

 

Figure 5: Relationships between indices and corresponding estimates in SAM (red circles, lines) 

and VPA (blue triangles, lines). 
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Figure 6: Time series of indices (points) and predictions by SAM (red lines) and VPA (blue lines).  

 

 

 



16 

 

Figure 7: Time series of index residuals in SAM (red circles) and VPA (blue triangles). Smoothed 

curves are shown. 

 

 

 

Figure 8: Time series of observed (points) and predicted values (points) of catch-at-age in SAM.  

 

 

 

Figure 9: Time series of residuals between orbserved and predicted values of catch-at-age in SAM. 

Smoothed curves are shown with 95% confidence intervals. 
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Figure 10: Retrospective pattern of VPA. Mohn’s rho is shown in the upper-left side. 
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Figure 11: Retrospective pattern of SAM. Mohn’s rho is shown in the upper-left side. 
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Figure 12: Hockey-Stick stock-recruitment relationship in VPA and SAM.  

 

 

 

Figure 13: Kobe plot in VPA.  
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Figure 14: Kobe plot in SAM.  
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Appendix A: SAM with the Beverton-Holt stock-recruitment relationship 

     In this appendix we show the results of SAM using the Beverton-Holt (BH) relationship. We 

could estimate the BH relationship within the stock assessment model in contrast to the base-case 

in which we used a random-walk (RW) recruitment and then conducted a post-hoc analysis of HS 

relationship (Fig. 12).  

     Estimates with the BH relationship in SAM were similar to those with the RW recruitment, 

while the former estimates of SSB and fishing mortality coefficients were slightly higher and lower, 

respectively, in recent years (Fig. A1). A serious retrospective bias was not found in this model (Fig. 

A2). The estimated BH relationship had an almost linear form, i.e., low steepness (Fig. A3), and 

thus, SSBMSY was estimated to be much higher than the range of SSB estimates (Table 3, Fig. A4). 

We consider that using the MSY reference points based on the BH relationship is not appropriate 

in this case, and using the HS relationship may be a better alternative for this stock. 

 

 

 

Figure A1: Time series of estimates of total biomass (thousand ton), SSB (thousand ton), 

recruitment (billion), and average fishing mortality coefficient of SAM with the RW recruitment, 

SAM with the BH relationship, and VPA.  
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Figure A2: Retrospective pattern of SAM with the BH relationship. Mohn’s rho is shown in the 

upper-left side. 
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Figure A3: Hockey-Stick relationship in the SAM with the RW relationship and Beverton-Holt 

stock relationship in the SAM with the BH relationship.  
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Figure A4: Kobe plot in SAM with the BH relationship.  
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Appendix B: Models with age-specific natural mortality coefficients 

As a sensitivity trial to data uncertainties, we analyzed a case with age-specific natural 

mortality coefficients (‘Gislasson1’). Although Takahashi et al. (2018) did not show M at age 0, we 

assumed the same value at age 1. M used from age 0 to 6+ is 0.47, 0.47, 0.38, 0.32, 0.28, 0.26, and 

0.24.  

     The abundance estimates in the past years with Gislasson1 were similar to those with M=0.41, 

whereas the recent estimates in the former case were lower than in the latter especially for VPA 

(Fig. B1). The average fishing mortality coefficients were slightly higher in the models with 

Gislasson1 for both VPA and SAM. A large retrospective bias was not observed for VPA (Fig. B2), 

but the estimates of SAM when removing five-year data was much different from other estimates, 

suggesting a positive retrospective bias in fishing mortality (Fig. B3).  

 

 

Figure B1: Time series of estimates of total biomass (thousand ton), SSB (thousand ton), 

recruitment (billion), and average fishing mortality coefficient of SAM and VPA with different 

natural mortality coefficients (M = 0.41 or Gislasson1).  
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Figure B2: Retrospective pattern of VPA with the age-specific natural mortality coefficients 

(Gislasson1). Mohn’s rho is shown in the upper-left side. 
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Figure B3: Retrospective pattern of SAM with the age-specific natural mortality coefficients 

(Gislasson1). Mohn’s rho is shown in the upper-left side. 

 

 


