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Summary 

The Technical Working Group for Chub Mackerel Stock Assessment (TWG CMSA) in NPFC has 

decided to use an operating model (OM) for comparing the performance of different four 

assessment model candidates. In this paper, we report the updated results of tuned virtual population 

analysis (VPA) and state-space assessment model (SAM), candidate stock assessment models 

proposed by Japan, under the determined scenarios to include biological uncertainties on natural 

mortality, weight, and maturity. The recent abundance estimates in VPA were much higher than 

those in the SAM and the recent fishing pressure was lower in the VPA. The scenarios under the 

highest maturity and weight estimated higher SSB in recent years and larger retrospective biases of 

SSB than the other scenarios in both SAM and VPA. The application of continuous hockey-stick 

stock-recruit model enabled to estimate feasible biological reference points. We found a few 

potential problems in both SAM and VPA: (1) the abundance indices from China and Russia were 

extremely hyper-stable against vulnerable stock size, (2) depletion statistics such as SSB/SSB0 and 

SSB/SSBmsy were highly sensitive to the choices of stock-recruit function, and (3) the MSY-based 

reference points were moderately sensitive to the biological parameters of maturity- and weight-at-

age. How to treat these problems will be a matter of discussion in the TWG CMSA towards the 

construction of OM and the benchmark stock assessment. 

 

Note: Working document submitted to the NPFC 4th Meeting of Technical Working Group on Chub 

Mackerel Stock Assessment, 22–25 June 2021. Document not to be cited without author’s 

permission.
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Introduction 

The Technical Working Group on Chub Mackerel Stock Assessment (TWG CMSA) in NPFC 

determined that (1) the candidates of stock assessment models (VPA, ASAP, KAFKA, and SAM) 

would be compared by an operating model, and (2) the operating model would be based on 

POPSIM-A (NPFC 2019). POPSIM-A uses a stock assessment model as an operating model and, 

therefore, input data are needed for the development of operating models by fitting stock assessment 

model candidates (Deroba et al. 2014). At the TWG CMSA03, we showed the preliminary results 

of tuned virtual population analysis (VPA) and state-space assessment model (SAM), which are 

candidate models proposed by Japan (Nishijima et al. 2020), using the shared data submitted from 

each Member (Nishijima 2020). At the same time, the TWG CMSA has determined to set six 

scenarios to include potential uncertainties of biological parameters and data (Table 1) and to rerun 

the stock assessment models using the determined scenarios by the next TWG CMSA meeting 

(NPFC 2020). Furthermore, Japan has intersessionally updated natural mortality coefficients (M) 

based on the re-estimation of von-Bertalanffy growth curve, resulting in higher estimates of M than 

the previous estimates (Nishijima et al. 2021). Here, we report the updated results of VPA and SAM 

by changing the following points from the previous analysis (Nishijima et al. 2020): (1) analyzing 

the six scenarios to evaluate the effect of uncertainties of biological parameters, (2) including the 

abundance indices from China and Russia, (3) estimating a continuous hockey-stick stock-recruit 

relationship, and (4) estimating some basic biological parameters, such as steepness and SSB0, and 

biological reference points, such as F0.1 and Fmsy, in the performance measures for evaluating the 

stock assessment models (NPFC 2020).  

 

Model 

Virtual population analysis 

The VPA assumes no error in catch-at-age and conducts a backward calculation of population 

dynamics. We assumed that the age structure was from 0 to 6+ and used the Pope’s approximation 

(Pope 1972) to estimate fish numbers and fishing mortality coefficients: 

𝑁𝑎,𝑦 =  𝑁𝑎+1,𝑦+1 exp(𝑀𝑎) + 𝐶𝑎,𝑦 exp (
𝑀𝑎

2
) ,  if a ≤ 4 (1) 

𝑁5,𝑦 =
𝐶5,𝑦

𝐶5,𝑦 + 𝐶6+,𝑦
𝑁6+ exp(𝑀5) + 𝐶5,𝑦exp (

𝑀5

2
) , 

 

(2) 
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𝑁6+,𝑦 =
𝐶6+,𝑦

𝐶5,𝑦 + 𝐶6+,𝑦
𝑁6+ exp(𝑀6) + 𝐶6+,𝑦exp (

𝑀6

2
) , 

 

(3) 

where Na,y is the fish number at age a in year y and Ca,y is the catch at age at age a in year y, and Ma 

is the natural mortality coefficients at age a. We here used Ma = 0.53 for all age classes under the 

scenarios A, C, and E, but instead used Ma = (0.80, 0.60, 0.51, 0.46, 0.43, 0.41, 0.40) from age 0 to 

6+ for the scenarios B, D, and F.  In addition, three types of weight-at-age and maturity-at-age were 

used: (weighted-)average for the scenarios A and B, the highest for the scenarios C and D, and the 

lowest for the scenarios E and F. The fish numbers in the terminal year (2019) were calculated from 

the fishing morality coefficients in the terminal year:  

𝑁𝑎,2019 =  
𝐶𝑎,2019 exp (

𝑀𝑎

2 )

1 − exp (−𝐹𝑎,2019)
 .  (4) 

The fishing mortality coefficients except for the terminal year were computed from  

𝐹𝑎,𝑦 = − log {1 −
𝐶𝑎,𝑦

𝑁𝑎,𝑦
exp (

𝑀𝑎

2
)}  .  (5) 

We also assumed that the fishing mortality coefficient of plus group (A+) were identical to that of 

A−1: 

𝐹6+,𝑦 = 𝐹5,𝑦 .  (6) 

We used ‘ridge VPA’ to stabilize the terminal F estimates, which included a ridge penalty (squared 

term of estimated parameters) in the optimization, i.e., penalized likelihood (Okamura et al. 2017): 

minimize     (1 − 𝜆) ∑ ∑ [
ln(2𝜋𝜈𝑘

2)

2
+ 

{ln(𝐼𝑘,𝑦) − ln(𝑞𝑘𝑋𝑘,𝑦
𝑏𝑘 )}

2

2𝜈𝑘
2 ]

𝑦𝑘
+ 𝜆 ∑ 𝐹𝑎,2019

2  ,

5

𝑎=0

 (7) 

 where λ is the penalty coefficient (0 < 𝜆 < 1), Ik,y is the value of index k in year y, 𝜈𝑘
2 is the variance 

of index k, qk is the proportionality constant, and bk is the nonlinear coefficient between index k and 

its associated estimates Xk. We used all six abundance indices from Japan (fleets 2-5), China (fleet 

7) and Russia (fleet 9) following the agreement at the TWG CMSA03 (NPFC 2020). The Japanese 

abundance indices are of recruitment numbers (i.e. 𝑋𝑘,𝑦 = 𝑁0,𝑦) (summer survey index for fleet 2 

and autumn survey index for fleet 3) and of spawning stock biomass (i.e. 𝑋𝑘,𝑦 = 𝑆𝑆𝐵𝑦) (dip-net 

fishery index for fleets 4 and egg survey index for fleet 5), while the Chinese and Russian indices 

were used by assuming 𝑋𝑘,𝑦 = ∑ 𝑆𝑎,𝑦 × 𝐵𝑎,𝑦
6+
𝑎=0   (i.e., vulnerable stock size) based on the 
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intersessional agreement (SWG_OM01 Summary), where Sa,y is the selectivity at age in year y and 

Ba,y is the biomass at age in year y. The selectivity at age was calculated so that the maximum fishing 

mortality coefficient was equal to one: Sa,y = Fa,y/max(Fy). We estimated bk,y to treat hyperstability 

or hyperdepletion. We selected the penalty coefficient so as to minimize the absolute value of 

Mohn’s rho (Mohn 1999) of spawning stock biomass in the five-year retrospective analysis: 

𝜌 =  
1

5
∑ (

𝑆𝑆�̂�2019−𝑖
𝑅 − 𝑆𝑆�̂�2019−𝑖

𝑆𝑆𝐵2019−𝑖
)

5

𝑖=1

 , (8) 

where �̂�2019−𝑖 is the estimate of average fishing mortality coefficients in year 2019−i using the full 

data and �̂�2019−𝑖
𝑅  is the corresponding estimate when removing the data after 2019−i. Therefore, the 

ridge VPA can reduce a retrospective bias to some extent. The selected λ were 0.20 for the scenario 

A, 0.01 for B, 0.30 for C, 0.08 for D, 0.93 for E, and 0.45 for F. 

 

State-space assessment model 

The basic model structure of SAM followed the original one (Nielsen and Berg 2014). Numbers at 

age a in year y are described as: 

log(𝑁0,𝑦) = 𝑓(𝑆𝑆𝐵𝑦) + 𝜂0,𝑦,   (9) 

log(𝑁𝑎,𝑦) = log(𝑁𝑎−1,𝑦−1) − 𝐹𝑎−1,𝑦−1 − 𝑀𝑎−1,𝑦−1 + 𝜂𝑎,𝑦,    1 ≤ a ≤ 5 (10) 

log(𝑁6+,𝑦) = log(𝑁5,𝑦−1𝑒−𝐹5,𝑦−1−𝑀5,𝑦−1

+ 𝑁6+,𝑦−1𝑒−𝐹6+,𝑦−1−𝑀6+,𝑦−1) + 𝜂6+,𝑦 , 

 

(11) 

where ηa,y is the process error at age a in year y.  The hockey-stick (HS) stock-recruit relationship 

has been recommended for the Japanese fisheries stocks in domestic stock assessments of Japan to 

obtain feasible MSY-based reference points (Ichinokawa et al. 2017) and the HS model has been 

used for this stock in Japan (Nishijima et al. 2019, Yukami et al. 2019). However, SAM is difficult 

to estimate the usual hockey-stick model owing to the indifferentiable nature of breaking point. 

Therefore, we alternatively applied a continuous hockey-stick model (Mesnil and Rochet 2010) that 

smooths the breaking point: 

𝑓(𝑆𝑆𝐵𝑦) =  
𝛼

2
{𝑆𝑆𝐵𝑦 + √𝛽2 +

𝛾2

4
− √(𝑆𝑆𝐵𝑦 − 𝛽)

2
+

𝛾2

4
} ,   (12) 

where α is the slope at the origin, β corresponds to the breaking point, and γ is the smoothing 
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parameter. We chose γ=100 thousand ton to stably estimate parameters. Using the Beverton-Holt 

(BH) model estimated an almost linear relationship between recruitment and SSB (Fig. 1), and thus 

unrealistically large spawning stock biomass without fishing (SSB0) and SSBmsy compared with 

the estimated historical SSB. The estimates of abundances and exploitation rates when using the 

BH model were little different from those when using the continuous HS model (Figs. S2, 3).  We 

used the same six datasets (scenarios) of different natural mortality coefficients (M) and biological 

parameters as in VPA (Table 1). 

We assumed different magnitudes of the process errors for age 0 and older: 

𝜂0,𝑦~𝑁(0, 𝜔𝑅
2 ), 𝜂𝑎,𝑦~𝑁(0, 𝜔𝑆,𝑎

2 ) (a > 0). We fixed the variance for the ages older than 0 at a small 

value (𝜔𝑆,𝑎
2 = 0.0001) because of a failure to converge when estimating this parameter. 

The fishing mortality coefficient was assumed to follow the multivariate random walk: 

log (𝑭𝒚) = log (𝑭𝒚−𝟏) + 𝝃𝑦 , if 𝑦 ≠ 2011 (12) 

where 𝑭𝒚 = (𝐹1,𝑦, … , 𝐹𝐴+,𝑦)𝑇 , 𝝃𝒚~MVN(0, 𝚺) , and 𝚺  is the variance-covariance matrix of 

multivariate normal distribution (MVN). The diagonal elements of matrix 𝚺 were 𝜎𝑎
2, while off-

diagonal elements were assumed to be 𝜌|𝑎−𝑎′|𝜎𝑎𝜎𝑎′  (a ≠ a’). 𝜌|𝑎−𝑎′|  corresponded to the 

correlation coefficient of F between ages a and a’, and this assumption reflected the decrease in 

correlation with increasing age difference. In addition, we assumed 𝐹6+,𝑦 = 𝐹5,𝑦 in accordance with 

tuned VPA. The random walk was omitted in 2011 because the fishing effort on chub mackerel 

possibly greatly decreased since the previous year because of the Great East Japan Earthquake and 

tsunami in March 2011. We found positive retrospective bias in stock abundance and negative bias 

in fishing mortality if assuming a random walk in 2011 (Nishijima et al. 2020). 

     The SAM estimated the errors in catch-at-age in a lognormal fashion: 

log(𝐶𝑎,𝑦) = log (
𝐹𝑎,𝑦

𝐹𝑎,𝑦 + 𝑀𝑎,𝑦
(1 − exp(−𝐹𝑎,𝑦 − 𝑀𝑎,𝑦))𝑁𝑎,𝑦) + 𝜀𝑎,𝑦 (13) 

where 𝜀𝑎,𝑦~N(0, 𝜏𝑎
2). We used the six indices in the same way as the VPA: 

log(𝐼𝑘,𝑦) = log(𝑞𝑟𝑋𝑦
𝑏𝑘) + 𝜂𝑘,𝑦 , (14) 

where 𝜂𝑘,𝑦 is the measurement error of index k in year y: 𝜂𝑘,𝑦~𝑁(0, 𝜈𝑘
2). 

The SAM has to estimate many parameters. We then imposed the following constraints to 

stabilize estimation and avoid overfitting:  

𝜔𝑆,𝑎 = 𝜔𝑆  (∀𝑎 (𝑎 > 0)) ,   (15) 
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𝜎0 = 𝜎1, 𝜎2 = 𝜎3 = ⋯ = 𝜎𝐴 ,   (16) 

𝜏2 = 𝜏3, 𝜏5 = 𝜏6+. 
 

(17) 

These limitations were determined based on the Akaike information criteria (AIC).  

In contrast to VPA, SAM regards state variables, such as numbers at age and F at age, as 

latent random variables, which requires complex, difficult numerical integral calculation for many 

random effects. We therefore used Template Model Builder (TMB: Kristensen, Nielsen, Berg, 

Skaug, & Bell, 2016), an R package which enables fast computation for latent variable models. We 

also applied a bias correction method of mean values because random effects were estimated by 

logarithmic scale (Thorson and Kristensen 2016).  

 

Retrospective analysis  

We conducted a retrospective analysis as a diagnostic of robustness and estimation bias. However, 

the Chinese and Russian abundance indices have short years (five and four years, respectively), 

which led to an estimation error while removing recent-year data. We removed these indices when 

the available years became less than three in the retrospective analysis. Moreover, since SAM was 

difficult to converge in the retrospective analysis, we fixed the stock-recruit parameter β at the 

estimated value in the full data analysis. We fixed λ in the equation 7 for the retrospective analysis. 

We calculated Mohn’s rho for biomass, SSB, recruitment, and average fishing mortality coefficient. 

We showed results of other diagnostics regarding residuals in fitting of prediction to samples in 

supplementary figures (Figs. S4-15). 

 

Basic biological parameters and biological reference point 

We first calculated F%SPR and F0.1 as biological reference points that do not use a stock-

recruitment relationship. We estimated them using M at age, weight at age, maturity at age, and 

estimated F at age of each year. We also tried to calculate Fmax but could not find a solution for 

some years. We therefore excluded Fmax in this document.  

 We then computed basic biological parameters and biological reference points that are based 

on a stock-recruitment relationship. As VPA does not assume a stock-recruitment relationship when 

estimating stock abundances, we estimated the continuous HS relationship after VPA estimation, 

using SSB and the number of recruits estimated by VPA. We used the averages of M at age, weight 

at age, maturity at age, and estimated F over years to derive SSB0 (SSB at F=0), R0 (recruitment 
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at F=0), steepness (h), MSY, SSBmsy (SSB that allows for MSY), %SPRmsy (percentage of 

spawner per recruit at the MSY level relative to that at F=0), SSBmsy/SSB0, and F/Fmsy. The 

definition of steepness in the HS function depended on that by Punt et al. (2014): h = 1 – β/SSB0. 

The MSY-based reference points were obtained by assuming that selectivity at age is the one that 

obtained by the average of F at age over years. Although we here estimated the ‘deterministic’ MSY-

based reference points for simplicity, it is forewarned that the deterministic MSY-based reference 

points are necessarily more optimistic than ‘stochastic’ MSY-based reference points that are 

computed by a population dynamics simulation incorporating stochasticity including recruitment 

variability (Okamura et al. 2020). As the biological parameters related to growth and maturity in 

chub mackerel are much time-varying due to density dependence (Watanabe and Yatsu 2004, 2006, 

Kamimura et al. 2021), the biological reference points would be time-varying (Miller and Brooks 

2021). Therefore, we also calculated per-year reference points using each year’s data and estimates. 

 

Results 

Estimates of abundances and fishing mortalities  

In SAM, the past estimates of total biomass were almost the same among scenarios, whereas the 

past SSB and recruitment were, respectively, higher and lower in the scenarios A, C, and E (age 

common M) than in the scenarios B, D, and F (age-specific M) (Table 2; Fig. 1, left panels). The 

recent estimates were relatively different among scenarios: especially, SSB were estimated to be 

much higher in the scenarios C and D (highest weight and maturity) than the other scenarios (Fig. 

1, left panels). This is because although the total fish numbers were the highest under the scenarios 

E and F (lowest weight and maturity), the much higher weight- and maturity-at-age under the 

scenarios C and D led to the highest SSB (Table 2). AIC values were 1008.7 for the scenario A, 

1010.4 for B, 1015.1 for C, 1016.4 for D, 1009.8 for E, and 1009.8 for F.  

 In VPA, the past estimates of abundances and exploitation rates were not so different from 

those in SAM (Table 2). However, the abundance estimates (biomass, SSB and recruitment) in 

recent years were much higher in VPA than in SAM, while the exploitation rates in recent years 

were lower in VPA than in SAM (Fig. 1, right panels). Exceptionally, VPA under the scenario F 

estimated a similar trend of SSB as SAM. Considering the difference among scenarios within VPA, 

the scenario E (age common M, the lowest weight and maturity) led to the highest biomass and 

recruitment, and the lowest exploitation rates, whilst the scenarios C and D (the highest weight and 

maturity) estimated higher SSB than the other scenarios as in SAM (Fig. 1, right panels). This is 
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again because the effects of the highest weight- and maturity-at-age with the scenarios C and D 

exceeded the effects of increased total numbers under the other scenarios (Table 2). The ridge VPA, 

unlike SAM, cannot be compared by AIC because of use of a penalized likelihood rather than a 

marginal likelihood. 

 In addition, the selectivity at age was moderately different between models especially for 

recent years: SAM estimated relatively higher selectivity for ages 1 and 2, but VPA estimated 

relatively higher selectivity for ages 4 and 5 in the latest two years (Fig. 2).  

  

Fitting to the abundance indices 

The patterns of fitting to the abundance indices were different between SAM and VPA with all 

scenarios. VPA fitted better to the higher recruitment indices (fleets 2 and 3) in 2016 and 2018 than 

SAM (Figs. 3-8), which was also reflected in smaller standard deviations (SDs) of VPA than those 

of SAM for the fleets 2 and 3 (Table 3). By contrast, SAM fitted better to a SSB index (fleet 4) in 

recent years than VPA (Figs. 3-8), which was associated with smaller SDs of SAM than those of 

VPA for the fleet 4. These differences are a cause for much higher abundances of VPA estimates 

than those of SAM estimates in recent years (Fig. 1). 

 The two recruitment indices (fleets 2 and 3) were significantly hyper-stable (b < 1) under most 

scenarios in SAM and VPA, and had more nonlinear relationships with estimated abundances in 

SAM than in VPA (Table3, Figs. 9-14). By contrast, the SSB index of fleet 5 (egg survey index) 

was significantly hyper-depleted under the scenarios A-D in both SAM and VPA, while the SSB 

index of fleet 4 (dip-net fishery index) showed almost linear relationships except for the scenarios 

C and D in VPA (Table 3, Figs. 9-14). It is noteworthy that the indices of the fleets 7 and 9 were 

extremely hyper-stable in VPA with the scenarios with A-D and in SAM with all scenarios, although 

their p values were not statistically significant for SAM because of large standard error due to small 

sample sizes (Table 3, Figs. 9-14). This indicates that these indices are not informative of 

abundances at least with this usage. 

 

Retrospective analysis  

In the retrospective analysis with SAM, there were no serious biases under the base-case scenarios 

A and B (Table 3, Figs. 15-16). We found some positive biases in F and some negative biases in 

SSB under the scenarios between C and F (Table 3, Figs. 17-20). Accordingly, the scenarios A and 

B had higher performances than other scenarios in terms of retrospective bias. 
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 VPA was also unlikely to cause serious retrospective biases in abundance estimates except for 

the biomass under the scenario E (Table 4, Figs. 21-26). However, VPA caused overestimation 

biases in F under the scenarios A to D, although the biases of F were related to the magnitude of 

penalty (λ in Equation 7).  

 

Basic biological parameters and biological reference points  

When using the averages of biological parameters and fishing mortality coefficients over years, the 

basic biological parameters (SSB0, R0) and MSY-based reference points (SSBmsy, MSY) that were 

associated with absolute values related to abundances were much larger in VPA than in SAM 

because higher estimates in recruitment and SSB led to higher parameter values of breaking points 

(β) (Table 5, Fig. 27). The parameter α (slope of continuous HS relationship at the origin) and 

steepness were slightly lower in SAM than in VPA, while the relative reference points (%SPRmsy, 

SSBmsy/SSB0, F/Fmsy) were slightly higher in SAM than in VPA (Table 5), suggesting that VPA 

provides a more optimistic view to this stock. Comparing different scenarios, the age-common M 

(A, C, and E) led to the higher SSB-related values (SSB0, SSBmsy), MSY, the relative MSY-based 

reference points (%SPRmsy, SSBmsy/SSB0), but the lower steepness than the age-specific M (B, 

D and F) (Table 5).   

 The per-year analysis of %SPR and F relative to F0.1 revealed that the fishing impacts had 

been generally high until the 2000s, but decreased in the 2010s (Fig. 28, top and middle panels). 

Exceptionally, F relative to F0.1 in the terminal year (2019) in VPA under the scenario B became 

abruptly high. This is because the instability in estimation in VPA caused enormous F for ages 5 

and 6+ in the terminal year (Fig. 2). %SPR was relatively robust against the choice of SAM or VPA 

(Fig. 28, top panels). F was generally higher than Fmsy until the 1990s but became lower than Fmsy 

thereafter in both SAM and VPA (Fig. 28, bottom panels). However, F relative to Fmsy has 

increased since 2015 for the scenarios A, B, E and F in both SAM and VPA. In particular, SAM 

under the scenarios E and F (the lowest weight and maturity) estimated higher F than Fmsy in the 

latest three years. There are three reasons for this conspicuous pattern: (1) SAM estimated higher 

exploitation rates in recent years (Fig. 1, bottom panels), (2) the steepness (or resilience to fishing) 

was estimated to be lower in SAM than in VPA (Table 5), and (3) the scenarios E and E led to a 

steep decline of SPR0 due to the decreased weights and the delayed maturity, causing an increase 

in %SPRmsy especially for SAM (Fig. 29). In other words, F/Fmsy increased recently, because the 

changes in the biological parameters of maturity- and weight-at-age decreased Fmsy although the 
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exploitation rates were kept at low levels. Since the steepness was lower in the age-common M 

scenarios than in the age-specific M scenarios (Table 5), the scenario E in SAM had higher F/Fmsy 

than the scenario F (Fig. 28, bottom panels). 

 The values of SSB/SSB0 in recent years were robust between SAM and VPA, but the values 

in past years were quite different between the two models (Fig. 30, top panels): SSB/SSB0 in recent 

five years was estimated to be around 0.50 in both models, whilst SSB/SSB0 in the 1970s was 

around 0.30 in SAM but 0.20 in VPA. SSB in the recent five years was around SSBmsy for the 

scenarios A, B, E, and F, but over SSBmsy for the scenario D and E in both SAM and VPA, whereas 

in the 1970s SSB was around SSBmsy with all scenarios in SAM, but lower than SSBmsy with all 

scenarios except for the scenario F in VPA (Fig. 30, bottom panels). This implies that we should 

take care of not only recent estimates but also past estimates when we will use a depletion statistic 

such as SSB/SSB0 and SSB/SSBmsy as a performance measure for evaluating the stock assessment 

models. 

 

Discussion  

We showed that there is a large difference of abundance estimates for recent years between VPA 

and SAM (Fig. 1). The reason for this is that VPA allows a flexible change in annual selectivity at 

age, whilst SAM estimates a gradual change in selectivity at age under the assumption of random 

walk of F at age. This difference of model configuration caused lower selectivities for ages 1-3 in 

VPA than in SAM (Fig. 2), leading to the recent inflation of recruitment estimates in VPA compared 

to SAM.  In addition, SAM is less likely to estimate outliers of recruitment than in VPA because of 

estimating stock-recruitment relationship. VPA, which does not have a stock-recruitment 

relationship internally, tended to (over-)fit to the high values of recruitment indices (fleets 2 and 3) 

in 2016 and 2018 (Figs. 3-8). By contrast, SAM fitted less to the recruitment indices, but fitted 

better to a SSB index (fleet 4). The difference of model configuration and the data conflict between 

the recruitment indices and the SSB index caused the large difference of abundance estimates 

between SAM and VPA in recent years. Although a previous simulation study demonstrated the 

ridge VPA estimated more correctly recent abundances than SAM in a situation with few abundance 

indices (Okamura et al. 2018), this may not be applicable for chub mackerel because more 

abundance indices are available. 

 The abundance indices from the fleets 7 and 9 exhibited extreme hyperstability in both SAM 

and VPA (Table 3, Figs. 9-14). This is because those index values little change during the short time 
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period when the data are available. The hyperstability can be a cause of overfishing because the 

abundance index is kept at a certain level even the actual abundance declines (Hutchings 1996, 

Rose and Kulka 1999), and therefore, we should discuss the way to resolve this problem for the 

benchmark stock assessments.  Estimating the nonlinearity coefficients between abundance and 

their index like this document is a simple effective way to improve the accuracy of stock sizes under 

hyperstability or hyperdepletion (Hashimoto et al.2018). At the same time, there are strong needs 

to improve tuning method and to standardize those indices as well as to check meta data of those 

indices. Moreover, these abundance indices elevated the difficulty in model estimation and 

convergence because of their short timeseries, which could prevent us from completing 

retrospective analysis. There, hence, deems to be some rooms to discuss about the application of 

those abundance indices to not only the benchmark stock assessment but also the model comparison 

via operating models. Consequently, at the present stage, we can suppose excluding these 

abundance indices from base-case scenarios but including them in a sensitivity trial as another 

scenario. 

 The scenarios with the highest maturity and weight (C and D) resulted in much higher SSB 

for recent years among the six scenarios in both SAM and VPA (Fig. 1, middle panels). This is 

because the setting of highest maturity and weight increased SSB (Table 2). In SAM, the values of 

AIC were higher in the scenario C and D and the retrospective biases in SSB and F were higher 

than the other scenarios (Table 4, Figs. 15-20). In VPA, the retrospective bias in SSB was also 

higher than the other scenarios (Table 4, Figs. 21-26). As the rates of maturity and growth certainly 

decreased along with the recent increase in stock size (Kamimura et al. 2021; Manabe et al. 2021), 

the retrospective analyses provide supportive evidence of the recent decline in weight- and 

maturity-at-age. Therefore, it may better to prioritize the other scenarios than the scenarios of 

highest weight and maturity when evaluating model performance by operating models. The two 

settings of M had little impact on absolute values of abundances and exploitation rates (Fig. 1), but 

relatively large influences on %SPR and F relative to F0.1 from the past to latest years (Fig. 28, top 

and middle panels): the scenarios with age-specific M had larger fishing impacts than the scenarios 

with age-common M. By contrast, F relative to Fmsy were greatly affected by the difference of 

maturity and weight in recent years rather than by the difference of M (Fig. 28, bottom panels). This 

suggests that the uncertainties of maturity and weight will be problematic. 

 The MSY-based reference points were also sensitive to the choice of stock-recruit relationship. 

The Beverton-Holt stock-recruitment relationship is the most common but did not work well for 
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the this stock of chub mackerel because it estimated almost linear relationships and huge SSB0 and 

SSBmsy that were implausible for biological reference points (Fig. S1). We alternatively used the 

continuous hockey-stick relationship which provided plausible MSY-based reference points. A 

recent meta-analysis (Zhou et al. 2020) estimated the order of Perciformes estimated at 46.3 ± 

17.1% (mean ± SD). Therefore, the range of estimated SPRmsy (22% to 33% in Table 4) falls within 

the 95% interval of this meta-analysis (mean ± 1.96SD). The high sensitivity of MSY-based 

reference points to the assumed type of stock-recruitment relationship will reduce the importance 

of MSY-based performance measures to be used in the stock assessment model competition through 

the operating model process due to much different MSY-based reference points even when similar 

abundance estimates were estimated: the comparison of MSY-based reference points is likely to 

make no sense. Considering the high sensitivity of MSY-based reference points, a possible option 

is to put less priority on (or not use daringly) the MSY-based reference points in performance 

measures of operation model testing. Instead, it will be better to focus on the performance measures 

that do not use a stock-recruit relationship, as the start point of our discussion. Candidates of the 

performance measures are absolute biomass and numbers at some historical benchmark years (first, 

middle, and last year of the stock assessment period), and the ratio showing the scale of the historical 

trends such as SSB/SSBmax (Table 2) as well as F0.1, and F%SPR. 

 Time-varying life-history parameters related to maturation and growth are one of the key 

characteristics for chub mackerel (Watanabe and Yatsu 2004, 2006, Kamimura et al. 2021). This 

indicates that basic biological parameters such as steepness and biological reference points such as 

SSBmsy change dynamically over years (Miller and Brooks 2021). We, hence, suggest that 

attention to the dynamic nature of chub mackerel should be paid not only in stock assessment but 

also future prediction and stock management. Even if we can correctly conduct stock assessment 

regarding past estimates, it is adequately possible that future prediction and management advice 

could be biased due to the misspecification of future biological parameters. Although %SPRmsy 

has sometimes been used as a proxy of Fmsy (Zhou et al. 2020), fixing %SPRmsy at a value as a 

proxy of Fmsy may not be effective for chub mackerel because %SPRmsy changed drastically in 

recent years (Fig. 29, bottom panels). This change of Fmsy caused the rapid increase F/Fmsy in 

recent years under some scenarios in SAM (Fig. 28, bottom-left panel), although the exploitation 

rate was kept at a low level (Fig. 1, bottom-left panel). The time-varying biological parameters and 

their uncertainties into future prediction and stock management will be an important topic, which 

should be discussed towards the benchmark stock assessment work of chub mackerel in 
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Northwestern Pacific.  
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Tables 

Table 1: Six scenarios to be used for the stock assessment analyses for the operating model 

development. 

Scenario Description M1 
Weight

-at-age 

Maturity

-at-age 

Catch 

(at-

age) 

Abundanc

e index 
Fleet 

A Base-case 1 
0.41 → 

0.53 
Average Average 

Averag

e 
All six 

Singl

e 

B Base-case 2 
Gislaso

n 
Average Average 

Averag

e 
All six 

Singl

e 

C 

Highest 

weight and 

maturity 

0.41 → 

0.53 
Highest Highest 

Averag

e 
All six 

Singl

e 

D 

Highest 

weight and 

maturity 

Gislaso

n 
Highest Highest 

Averag

e 
All six 

Singl

e 

E 

Lowest 

weight and 

maturity 

0.41 → 

0.53 
Lowest Lowest 

Averag

e 
All six 

Singl

e 

F 

Lowest 

weight and 

maturity 

Gislaso

n 
Lowest Lowest 

Averag

e 
All six 

Singl

e 

1: The median values of natural mortality coefficients (M) have been changed from 0.41 to 0.53 

according to the update on the von-Bertalanffy growth curve (Nishijima et al. 2021). 
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Table 2: Total numbers and SSB of summary statistics throughout the whole period (minimum, median, maximum, and mean), some years 

(1970, 1980, 1990, 2000, 2010, and 2019), and their ratios of the latest year (2019) to the summary statistics. 

Model Scenario Min Median Max Mean 1970 1980 1990 2000 2010 2019 2019/Min 2019/Median 2019/Max 2019/Mean 

Total number (billion)                

SAM 

A 0.68 (2000) 6.22 42.59 (2018) 12.10 24.42 11.66 0.82 0.68 4.96 35.14 51.63 5.65 0.83 2.90 

B 0.73 (2000) 6.77 44.28 (2018) 12.89 27.64 12.66 0.89 0.73 4.80 32.74 44.84 4.84 0.74 2.54 

C 0.68 (2000) 6.18 40.22 (2018) 11.97 24.40 11.66 0.82 0.68 4.87 33.83 49.93 5.47 0.84 2.83 

D 0.73 (2000) 6.86 42.99 (2018) 12.89 27.62 12.65 0.89 0.73 4.77 32.51 44.68 4.74 0.76 2.52 

E 0.68 (2000) 6.72 48.87 (2018) 13.21 24.23 11.61 0.81 0.68 5.43 41.33 60.75 6.15 0.85 3.13 

F 0.73 (2000) 7.68 52.47 (2018) 14.18 27.57 12.55 0.89 0.73 5.63 40.71 55.69 5.30 0.78 2.87 

VPA 

A 0.76 (2001) 7.07 151.38 (2018) 17.77 26.34 11.99 0.97 1.05 4.25 101.16 132.50 14.30 0.67 5.69 

B 0.86 (2001) 7.74 141.67 (2018) 17.90 29.80 12.68 1.02 1.16 4.05 80.03 93.08 10.34 0.56 4.47 

C 0.76 (2001) 7.17 168.25 (2018) 18.58 26.34 11.99 0.97 1.05 4.30 111.80 146.44 15.60 0.66 6.02 

D 0.86 (2001) 7.82 157.50 (2018) 18.63 29.80 12.68 1.02 1.16 4.08 88.20 102.58 11.28 0.56 4.73 

E 0.76 (2001) 7.74 405.97 (2018) 29.37 26.34 11.99 0.97 1.05 5.55 261.70 342.78 33.80 0.64 8.91 

F 0.86 (2001) 8.32 187.61 (2018) 19.89 29.80 12.68 1.02 1.16 4.28 103.63 120.52 12.46 0.55 5.21 

SSB (thousand ton)                

SAM 

A 54.2 (1997) 385.7 1528.3 (2018) 589.2 793.1 1159.4 110.7 72.6 255.6 1312.1 24.23 3.40 0.86 2.23 

B 48.7 (2002) 342.5 1361.4 (1979) 505.8 713.4 1072.5 90.0 62.9 187.4 1050.1 21.55 3.07 0.77 2.08 

C 54.1 (1997) 374.3 3027.2 (2018) 735.2 793.3 1163.0 110.7 72.4 233.4 2918.0 53.97 7.80 0.96 3.97 

D 48.5 (2002) 343.2 2521.5 (2018) 631.8 713.6 1069.9 90.1 62.9 174.8 2415.5 49.78 7.04 0.96 3.82 

E 53.8 (1997) 401.7 1492.8 (1979) 558.7 787.6 1182.3 109.5 72.7 274.0 1035.0 19.26 2.58 0.69 1.85 

F 48.6 (2002) 349.3 1344.0 (1979) 493.7 711.5 1048.2 89.7 63.1 226.8 935.8 19.25 2.68 0.70 1.90 

VPA A 56.2 (2002) 405.1 3446.6 (2019) 699.1 774.8 1295.3 136.0 82.7 149.0 3446.6 61.35 8.51 1.00 4.93 
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B 48.0 (2002) 350.1 2509.4 (2019) 582.5 690.2 1135.8 104.2 68.8 126.8 2509.4 52.31 7.17 1.00 4.31 

C 56.2 (2002) 405.1 9569.5 (2019) 998.5 774.8 1295.3 136.0 82.7 149.4 9569.5 170.35 23.62 1.00 9.58 

D 48.0 (2002) 350.1 7015.4 (2019) 807.8 690.2 1135.8 104.2 68.8 126.9 7015.4 146.25 20.04 1.00 8.69 

E 56.2 (2002) 415.0 2904.6 (2019) 670.8 774.8 1295.3 136.0 82.7 159.3 2904.6 51.71 7.00 1.00 4.33 

F 48.0 (2002) 346.5 1493.2 (1978) 500.4 690.2 1135.8 104.2 68.8 127.9 1197.2 24.96 3.46 0.80 2.39 

Note: The numbers of brackets show the years when the minimum or maximum values recorded. 
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Table 3: The index-related parameters of b (nonlinearlity coefficient) and ν (standard deviation) estimated by SAM and VPA under the 

scenarios A to F. 

Model Scenario 
b (nonlinearlity coefficient) ν (standard deviation) 

Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 7 Fleet 9 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 7 Fleet 9 

SAM 

A 1.56* 1.91* 1.13 0.64* 0.00 0.00 1.24 0.84 0.52 0.31 0.15 0.24 

B 1.61* 1.94* 1.15 0.65* 0.00 0.00 1.22 0.81 0.56 0.32 0.15 0.24 

C 1.55* 1.89* 0.82 0.45* 0.00 0.00 1.26 0.88 0.63 0.34 0.15 0.24 

D 1.59* 1.91* 0.82 0.45* 0.00 0.00 1.24 0.85 0.67 0.35 0.15 0.24 

E 1.43 1.77* 1.25 0.76 0.00 0.00 1.31 0.95 0.51 0.27 0.15 0.24 

F 1.47* 1.81* 1.26 0.77 0.00 0.00 1.29 0.93 0.53 0.27 0.15 0.24 

VPA 

A 1.26* 1.45* 0.87 0.50* 0.21* 0.10* 1.18 0.75 0.70 0.31 0.11 0.23 

B 1.33* 1.51* 0.91 0.53* 0.15* 0.10* 1.15 0.73 0.72 0.31 0.11 0.23 

C 1.23 1.42* 0.64* 0.37* 0.19* 0.13* 1.18 0.76 0.75 0.33 0.12 0.23 

D 1.30* 1.48* 0.66* 0.38* 0.15* 0.12* 1.15 0.73 0.78 0.34 0.12 0.23 

E 1.03 1.21 0.95 0.55 0.62 0.17 1.26 0.83 0.65 0.30 0.09 0.24 

F 1.25 1.43* 1.25 0.74 0.34 0.17* 1.18 0.75 0.68 0.30 0.11 0.23 

* The probability of b < 1 (hyperstability) or b > 1 (hyperdepletion) is p < 0.05. 
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Table 4: Mohn’s rho of the scenarios A to F with SAM and VPA. 

Model Scenario Biomass SSB Recruitment F 

SAM 

A -0.10 -0.18 0.02 0.25 

B -0.06 -0.14 0.03 0.17 

C -0.15 -0.26 0.03 0.39 

D -0.15 -0.28 0.00 0.67 

E -0.19 -0.22 -0.04 0.37 

F -0.15 -0.20 -0.02 0.37 

VPA 

A 0.14 0.00 -0.22 1.08 

B 0.08 0.02 -0.21 2.18 

C 0.15 0.16 -0.13 0.86 

D 0.12 0.18 -0.11 1.07 

E 0.39 0.00 -0.11 0.23 

F 0.14 0.00 -0.12 0.35 
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Table 5: Basic biological parameters and biological reference points when using the averages of biological parameters and fishing mortality 

coefficients over years. 

Model 
Scen- 

ario 

α 
(106/ton) 

β 
(1000 ton) 

σR 
SPR0 

(g) 

SSB0  

(1000 ton) 

R0 

(billion) 

Steepne

ss (h) 

SSBmsy 

(1000 ton) 

MSY 

(1000 ton) 

%SPR

msy 

SSBmsy 

/SSB0 

F/ 

Fmsy 

SAM 

A 0.0084 1400 0.75 376 4420 12 0.68 1420 986 33 0.32 1.09 

B 0.0123 1000 0.76 329 4080 12 0.75 1040 825 26 0.25 1.08 

C 0.0083 1400 0.74 394 4580 12 0.69 1430 1023 32 0.31 1.02 

D 0.0123 1000 0.76 343 4220 12 0.76 1040 858 25 0.25 1.01 

E 0.0092 1130 0.79 364 3790 10 0.70 1160 865 31 0.31 1.04 

F 0.013 1000 0.79 320 4160 13 0.76 1030 848 25 0.25 1.06 

VPA 

A 0.0091 2960 0.87 376 10080 27 0.71 2990 2272 30 0.30 0.99 

B 0.0130 2160 0.88 329 9200 28 0.77 2200 1855 24 0.24 1.02 

C 0.0085 5180 0.85 394 17350 44 0.70 5210 3852 30 0.30 0.98 

D 0.0121 3730 0.87 343 15550 45 0.76 3770 3110 24 0.24 1.00 

E 0.0102 2410 0.99 364 8960 25 0.73 2450 2083 27 0.27 0.91 

F 0.0151 950 0.97 320 4600 14 0.79 990 945 22 0.22 0.95 
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Figures  

 

Figure 1: the estimates of total biomass (1st column), SSB (2nd column), recruitment number (3rd 

column), and exploitation rate (4th column) with SAM (left) and VPA (right) under the scenarios A to F. 
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Figure 2: Selectivity at age in SAM (left) and VPA (right) under the scenario A to F. Selectivity is 

scaled so that its sum is equal to one. 
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Figure 3: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario A. 

 

 

Figure 4: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario B. 
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Figure 5: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario C. 

 

 

Figure 6: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario D. 
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Figure 7: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario E. 

 

 

Figure 8: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario F. 
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Figure 9: The relationships between abundance indices and their corresponding abundance 

estimates in SAM (red) and VPA (blue) under the scenario A. 

 

 

Figure 10: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario B. 
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Figure 11: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario C. 

 

 

Figure 12: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario D. 

 



29 

 

 

Figure 13: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario E. 

 

 

Figure 14: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario F. 
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Figure 15: Retrospective pattens SAM under the scenario A. 

 

 

Figure 16: Retrospective pattens of SAM under the scenario B. 
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Figure 17: Retrospective pattens of SAM under the scenario C. 

 

 

Figure 18: Retrospective pattens of SAM under the scenario D. 
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Figure 19: Retrospective pattens of SAM under the scenario E. 

 

 

Figure 20: Retrospective pattens of SAM under the scenario F. 
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Figure 21: Retrospective pattens of VPA under the scenario A. 

 

 

Figure 22: Retrospective pattens of VPA under the scenario B. 
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Figure 23: Retrospective pattens of VPA under the scenario C. 

 

 

Figure 24: Retrospective pattens of VPA under the scenario D. 
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Figure 25: Retrospective pattens of VPA under the scenario E. 

 

 

Figure 26: Retrospective pattens of VPA under the scenario F. 
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Figure 27: Continuous hockey-stick stock-recruit relationships in SAM and VPA with different 

scenarios.  
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Figure 28: Temporal trends of percent SPR (top), F relative to F0.1 (middle), and F relative to 

Fmsy (bottom) in SAM (left) and VPA (right) under the scenarios A to F when using per-year 

biological parameters and F-at-age estimates. The values of Fmsy here is based on the time-

varying estimates shown in Fig. 29.  
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Figure 29: Temporal trends of SPR0 (top) and %SPRmsy (bottom) in SAM (left) and VPA (right) 

under the scenarios A to F. 
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Figure 30: Temporal trends of SSB relative to SSB0 (top) and SSB relative to SSBmsy (bottom) 

in SAM (left) and VPA (right) under the scenario A to F. 
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Supplementary Figures  

 

Figure S1: The Beverton-Holt stock-recruit relationships applied to SAM (left) and VPA (right). 

 

 

Figure S2: Comparison of estimates in biomass, SSB, recruitment, and exploitation rate between 

continuous hockey-stick (HS) and Beverton-Holt (BH) relationship under the scenario A with SAM. 
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Figure S3: Comparison of estimates in biomass, SSB, recruitment, and exploitation rate between 

continuous hockey-stick (HS) and Beverton-Holt (BH) relationship under the scenario B with SAM. 

 

 

Figure S4: Residuals of abundance indices under the scenario A in SAM and VPA. The curves are 

the prediction by the LOESS (locally estimated scatterplot smoothing) regression. 
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Figure S5: Residuals of abundance indices under the scenario B in SAM and VPA. 

 

 

Figure S6: Residuals of abundance indices under the scenario C in SAM and VPA. 
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Figure S7: Residuals of abundance indices under the scenario D in SAM and VPA. 

 

 

Figure S8: Residuals of abundance indices under the scenario E in SAM and VPA. 
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Figure S9: Residuals of abundance indices under the scenario F in SAM and VPA.  

 

 

Figure S10: Residuals of catch-at-age under the scenario A in SAM. The blue curves are the 

prediction by the LOESS regression with 95% confidence intervals. 
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Figure S11: Residuals of catch-at-age under the scenario B in SAM. 

 

 

Figure S12: Residuals of catch-at-age under the scenario C in SAM. 
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Figure S13: Residuals of catch-at-age under the scenario D in SAM. 

 

 

Figure S14: Residuals of catch-at-age under the scenario E in SAM.  
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Figure S15: Residuals of catch-at-age under the scenario F in SAM.  


