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ABSTRACT  

The United Nations General Assembly called upon States to manage fisheries sustainably 

and protect vulnerable marine ecosystems (VMEs) from destructive fishing practices when 

they adopted Resolution 61/105 in 2006. The Convention on the Conservation and 

Management of High Seas Fisheries Resources in the North Pacific Ocean requires North 

Pacific Fisheries Commission (NPFC) members to develop a process to identify VMEs using 

the best scientific information available. NPFC identified four taxonomic groups of corals as 

indicators of potential VMEs but has not yet developed objective and quantitative definitions 

of VMEs based on catches, visual surveys, predictive models, or other types of information. 

Moreover, to date no VMEs have been identified in the northeast (NE) part of the NPFC 

Convention Area (CA). In 2021, the NPFC’s Small Working Group (SWG) on VMEs 

proposed the first step in a framework to use the best available data to identify VMEs, 

including visual data (i.e. video and/or photographic images) and predictive models. Canada 

has limited visual data and model predictions of the suitable habitat for VME indicator taxa in 

the NE part of NPFC’s CA where it fishes for Sablefish (Anoplopoma fimbria). In this working 

paper, we propose one quantitative method of VME identification that integrates visual data 

and model predictions in a manner that aligns with the SWG VME’s framework, the 

precautionary approach, the Convention, and the research plan of NPFC’s Scientific 

Committee. We use data from Cobb Seamount to illustrate our proposed methodology. 

Exploratory application of our approach leads to the identification of 83 1-km2 areas that are 

likely to be VMEs at depths ranging from the pinnacle of Cobb at 18 m to 1,573 m, including 

one VME on the northwest flank of Cobb Seamount. The primary goal for this working paper 

is to propose and receive feedback on our approach before applying it to identify VMEs and 

areas that are likely to be VMEs in the NE part of the NPFC’s CA. Next steps include (1) 

revising our approach based on input from NPFC members, stakeholders, and observers, 
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(2), applying our revised method and identifying VMEs and areas that are likely to be VMEs 

in the NE part of the NPFC CA, and (3) engaging in periodic review of the analyses, 

especially when new data become available. 
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INTRODUCTION 

Reason for identifying Vulnerable Marine Ecosystems  

Bottom-contact fishing gears are known to harm fragile seafloor habitats, including biogenic 

structures formed by corals and sponges (Ardron et al. 2014). In 2006, the United Nations 

General Assembly (UNGA) Resolution 61/105 called upon “States to take action immediately, 

individually and through fisheries management organizations and arrangements, and 

consistent with the precautionary and ecosystem approaches, to sustainably manage fish stocks 

and protect vulnerable marine ecosystems (VMEs), including seamounts, hydrothermal vents 

and cold water corals, from destructive fishing practices, recognizing the immense importance 

and value of deep sea ecosystems and the biodiversity they contain” (UNGA 2006). The Food 

and Agriculture Organization (FAO) subsequently published guidelines for the management of 

deep-sea fisheries in international waters. Those guidelines outlined five criteria of areas, 

habitats, or ecosystems that should be used individually or in combination to identify VMEs: 

(1) uniqueness or rarity, (2) functional significance of the habitat, (3) fragility, (4) life-history 

traits of component species that make recovery difficult, and (5) structural complexity (FAO 

2009). The FAO also recommended the development of case-specific operational definitions 

of VMEs for their application (see examples in Kenchington et al. 2014, Morato et al. 2018, 

Miyamoto & Yonezaki 2019, Rowden et al. 2020). 

 

In its research plan, the North Pacific Fisheries Commission’s (NPFC) Scientific Committee 

recognizes the importance of developing a process for identifying VMEs so that they can be 

protected from significant adverse impacts (SAIs) caused by bottom fishing practices. Article 

10(4) of the Convention on the Conservation and Management of High Seas Fisheries 

Resources in the North Pacific Ocean (henceforth the Convention) asserts that the NPFC shall 

“develop a process to identify vulnerable marine ecosystems, including relevant criteria for 

doing so, and identify, based on the best scientific information available, areas or features 

where these ecosystems are known to occur, or are likely to occur...” The NPFC Scientific 

Committee’s 2020-24 Research Plan aims specifically to “develop consensus on criteria used 

to identify VMEs and how this might be applied in the NPFC.” The NPFC’s Conservation and 

Management Measures (CMMs) 2019-06 (NPFC 2019) and 2021-05 (NPFC 2021a) provide 

science-based standards and criteria for identification of VMEs and state: “The purpose of the 

standards and criteria is to provide guidelines for each member of the Commission in 

identifying VMEs and assessing SAIs of individual bottom fishing activities on VMEs or marine 

species in the Convention Area (CA).” Guidance on science-based standards and criteria for 

identification of VMEs in the CA are given in NPFC’s CMMs 2019-06 and 2021-05 (see Annex 

2 in NPFC 2019, 2021a). Although seamounts, hydrothermal vents and cold-water corals are 

referred to as examples of VMEs in paragraph 83 of UNGA Resolution 61/105 (UNGA 2006), 

there is no definitive list of specific taxa or areas that are to be regarded as VMEs. In the context 
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of VMEs, vulnerability is related to the likelihood that a population, community, or habitat will 

be substantially altered by fishing activities, and the timing of recovery from fishing-related 

impacts (NPFC 2019, 2021a). As noted in CMMs 2019-05 (NPFC 2021a) and 2021-06 (NPFC 

2019), “in these ecosystems, ecological processes are usually highly dependent on these 

structured systems. Further, such ecosystems often have high diversity, which is dependent on 

the structuring organisms.”  

 

Balancing the objectives of protecting VMEs while minimizing impacts to 

commercial bottom fisheries 

We recognize that there is a delicate balance between the NPFC’s mandate to identify and 

protect VMEs and areas likely to be VMEs, and the desire of many stakeholders to minimize 

costs to commercial bottom fisheries. One approach to balancing these two objectives was 

outlined by Warawa et al. (2020) who applied a spatial optimization approach to identify VME 

areas for protection from SAIs that was modelled after the South Pacific Regional Fisheries 

Management Organization’s (SPRFMO) application of Zonation software, a publicly available 

decision support tool used for spatial conservation planning. Warawa et al. (2020) recognized 

that catch, visual (video and/or photos), and other types of data, including outputs from 

predictive models, may also be used to identify VMEs. In that context, in the process of 

identifying VMEs and areas likely to be VMEs we recognize the role of uncertainties in 

balancing objectives. Therefore, we propose a methodology to identify VMEs and areas likely 

to be VMEs that addresses uncertainties associated with limited data in the NPFC’s CA. We 

use the best available data for meeting our objectives of identifying VMEs, while minimizing 

impacts to the NPFC’s bottom fisheries and propose a quantitative and repeatable method that 

can be easily updated when new information becomes available. 

 

Seamounts in the North Pacific Ocean 

As defined by the International Hydrographic Organization (IHO 2019), a seamount is “A 

distinct, generally equidimensional [i.e., conical-shaped] elevation greater than 1000 m above 

the surrounding relief as measured from the deepest isobaths that surrounds most of the 

feature”. As a consequence of their global distribution and the concentration of sensitive 

benthic ecosystems and fishing pressure that occur at seamounts, several RMFOs have 

prioritized seamounts in efforts to protect VMEs (Clark et al. 2010). Identifying VMEs at 

seamounts requires quantifying the ecological functions and services characterized by their 

biological communities (Clark et al. 2010). Many seamounts can harbour dense assemblages 

of cold-water corals and sponges (CWCS).  

 

What are VME indicator taxa? 

The FAO Guidelines (FAO 2009) provide examples of potential vulnerable species groups, 
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communities, and habitats as well as features that potentially support them (see Annex 2.1 of 

CMM 2019-05 and 2021-06 (NPFC 2019, 2021a). The NPFC currently recognizes four 

taxonomic groups of corals (Alcyonacea (excluding Gorgonians), Antipatharia, Gorgonacea 

(now within the Alcyonacea), and Scleractinia) as VME indicator taxa (NPFC 2019, 2021a). 

Other regional fisheries management organizations (RFMOs) recognize additional groups of 

CWCS as indicators of VMEs (FAO 2019), including sea pens (order Pennatulacea) and glass 

sponges (class Hexactinellida). In this working paper, we focus our analyses on the four groups 

of corals recognized by the NPFC as VME indicator taxa. 

 

Structural complexity formed by VME indicator taxa 

Structural complexity is one of the FAO’s five criteria to identify VMEs (FAO 2009). Acting 

as biogenic habitat, CWCS increases structural complexity on the seafloor which in turn 

enhances biodiversity and the abundance of other animals in an area (Rowden et al. 2020). The 

capacity to form structural complexity (i.e., biogenic habitat) is a key biological trait associated 

with using CWCS as the umbrella taxa (i.e., “species whose conservation confers a protective 

umbrella to numerous co-occurring species”, Fleishman et al. 2000) for delineating areas that 

are VMEs. Additional life history traits of CWCS, such as slow growth, long life spans, and 

rarity of occurrence, make them vulnerable to physical disturbance caused by bottom fishing 

activities. Thus, identifying areas of habitat-forming CWCS communities serves to meet the 

criteria used for identifying sites as VMEs (Chu et al. 2019; see also the five VME criteria 

identified in FAO 2009). 

 

Approaches applied to identifying VMEs 

While criteria are available for identifying VMEs (e.g. FAO 2009), there are few case-specific 

definitions of VMEs and areas likely to be VMEs. Ardron et al. (2014) drew on a review of 

existing approaches to develop a 10-step systematic approach for identifying and protecting 

VMEs. Specifically, these are: 

“(1) Comparatively assess potential VME indicator taxa and habitats in a region  

(2) determine VME thresholds 

(3) consider areas already known for their ecological importance 

(4) compile information on the distributions of likely VME taxa and habitats, as well as related 

environmental data 

(5) develop predictive distribution models for VME indicator taxa and habitats 

(6) compile known or likely fishing impacts 

(7) produce a predicted VME naturalness distribution (areas of low cumulative impacts) 

(8) identify areas of higher value to user groups 

(9) conduct management strategy evaluations to produce trade-off scenarios, and 

(10) review and re-iterate, until spatial management scenarios are developed that fulfil 
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international obligations and regional conservation and management objectives” 

 

Many approaches to identifying VMEs rely on using qualitative information and expert 

judgement, which can be inconsistent and lack transparency (Morato et al. 2018). Morato et al. 

(2018) emphasize that it would be advantageous for analysts to develop robust and repeatable 

quantitative methods to identify VMEs. At least three quantitative and repeatable approaches 

have been applied since Ardron et al. (2014). Those approaches draw on catches from scientific 

surveys, existing data on the distribution of VME indicator taxa, and/or visual data from 

scientific surveys of benthic organisms. 

 

Based on FAO’s criteria for identifying VMEs (FAO 2009), Kenchington et al. (2014) used a 

kernel density estimation (KDE) approach to analyze research trawl survey data and identify 

areas of relatively high biomass of four VME indicator taxa (large-sized sponges, sea pens, and 

small and large gorgonians) in the Northwest Atlantic Fisheries Organization (NAFO) 

Regulatory Area. Using KDE they identified significant concentrations of VME indicator 

biomass, which they interpreted as VMEs. They also independently assessed the VMEs they 

identified with images, benthic sampling, and/or predictive models. 

 

In the NW part of the NPFC CA, Japan recently used seafloor images, fisheries bycatch data, 

research surveys, and a KDE method to map concentrations of fishing effort and areas of 

overlap between the distribution of VME indicator taxa and fishing activities (Miyamoto & 

Yonezaki 2019). They then visually surveyed areas that were potential VMEs and qualitatively 

assessed those areas relative to the five FAO criteria for identification of VMEs (FAO 2009). 

 

In the NE Atlantic Ocean, Morato et al. (2018) used a spatial and quantitative method to 

identify VMEs by applying a multi-criteria assessment to a database of VME records compiled 

by the International Council for the Exploration of the Sea (ICES). 

 

Rowden et al. (2020) noted that many quantitative approaches to identification of VMEs 

focused on predicting the distribution of VME indicator taxa, however, they also recognized 

that the presence of one or more VME indicator taxa does not necessarily mean that a VME is 

present. They proposed a quantitative approach to determine a density threshold of VME 

indicator taxa above which a VME was present in the SPRFMO area, drawing on FAO’s VME 

criterion of structural complexity (FAO 2009). Specifically, Rowden et al. (2020) analyzed 

video and still images to identify areas where corals support a high diversity of associated taxa. 

They found significant relationships between coral density and the richness of associated 

benthic organisms and suggested that a density threshold could be used in combination with 

predictive models to map areas where the density of VME indicators was equal to or greater 
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than that threshold and were therefore VMEs at risk of SAIs. Rowden et al. (2020) also 

emphasized the value of thresholds to make the identification of VMEs less subjective. They 

hypothesized that the thresholds used to identify VMEs would likely vary among regions. 

Indeed, the types of thresholds that can be used to identify VMEs depend on available data to 

map VMEs or areas that are likely to be VMEs.  

 

Data limitations for identification of VMEs in the Northeast Pacific Ocean 

Three of the quantitative approaches described above (Kenchington et al. 2014, Morato et al. 

2018, Rowden et al. 2020) require data on the abundance or density of CWCS sampled over 

the general study area to identify VMEs and areas that are likely to be VMEs. There are many 

records of bycatch of CWCS in research trawls in the NAFO Regulatory Area, which has 

allowed individual VME indicator taxa to be used for identifying VMEs using a KDE approach 

in the NW Atlantic Ocean (Kenchington et al. 2014). The ICES database used by Morato et al. 

(2018) also contained thousands of records of CWCS from many sources that can be used to 

identify VME indicator taxa distributions and areas that are likely to be VMEs. Similarly, there 

has been a significant effort in the SPRFMO CA to identify and accumulate VME records from 

fisheries bycatch and conduct directed research surveys that can be used to determine VME 

thresholds and the distribution of VME indicator taxa (Rowden et al. 2020). 

 

In the NPFC’s CA there is limited CWCS abundance data available. Most of the existing 

CWCS abundance data in the NPFC CA are from fisheries bycatch and research surveys in the 

NW region of the North Pacific Ocean (Miyamoto & Yonezaki 2019, Dautova et al. 2020, 

Calder & Watling 2021). 

 

Due to the limited availability of abundance data in the NE region of the NPFC’s CA, we are 

unable to fully apply one or more of the approaches outlined above. The majority of CWCS 

data available in the NE Pacific Ocean are research trawl data and visual survey data that almost 

entirely fall within domestic waters of Canada and the United States of America. The only 

bottom fishery operating in the NE part of the NPFC CA is Canada’s Sablefish fishery at 

seamounts (primarily on Brown Bear, Cobb, Corn, Eickelberg, and Warwick Seamounts). 

Canada has extensive data on the location and catches in the Sablefish fishery since 1996. 

Canada’s Sablefish fishery is conducted with long-lined traps or hook and line gear, which 

typically do not retain VME indicator taxa, thus there are insufficient records of CWCS bycatch 

available for this region that might support an analysis such as KDE (as in Kenchington et al. 

2014). In addition, relatively few seamounts have been visually surveyed in the NE part of the 

NPFC CA (but see Curtis et al. 2015), and even few visual surveys have been sufficiently 

annotated to document the distribution, richness, or density of VME indicator taxa or associated 

benthic species. Although habitat suitability of the NPFC’s VME indicator taxa has been 
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predicted (Chu et al. 2019), there are insufficient data to predict the density or abundance of 

those same VME indicator taxa. Therefore, the scarcity of visual survey data coupled with the 

inability to predict VME indicator density or abundance in the NE part of the NPFC’s CA, 

limits application of the threshold method described by Rowden et al. (2020). 

 

A quantitative method for identifying VMEs in the NE Pacific Ocean using 

predictive models and visual surveys 

Our proposed approach uses the best scientific information following the decision tree 

recommended by the NPFC’s SWG on VME to identify data for VME identification in the NW 

and NE parts of the NPFC CA (NPFC 2021b) (Figure 1). We propose a quantitative approach 

similar to Rowden et al. (2020) by first resolving the non-linear, threshold relationship between 

species richness (dependent variable) associated with the presence of the four NPFC VME 

indicator taxa (independent variable) in visual survey data. Due to differences in the type of 

available data, we quantified the threshold of the independent variable as the frequency of 

occurrence of VME indicator taxa rather than the density of VME indicator taxa used in 

Rowden et al. (2020). This threshold quantifies the minimum frequency of occurrence of VME 

indicator taxa where richness of associated epibenthic species is at a maximum in visual data. 

We then use predictive habitat models (PHMs) to generate maps of suitable habitat for each 

VME indicator taxon. We examine areas where the predictions are equal to or greater than our 

quantitative threshold to identify areas likely to be VMEs. Finally, we identify VMEs as areas 

where both the predictions and visual survey data are in confirmation. Our general application 

of PHMs can be used to assess all seamounts in the NPFC’s CA to preliminarily identify areas 

that are likely to be VMEs. Targeted visual surveys can then be used to groundtruth high 

priority areas identified in the PHMs to confirm VME areas. 
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Figure 1. Decision tree used to identify data that can be used to identify VMEs in the NW 

and NE parts of the NPFC Convention Area (NPFC 2021b) and how it relates to our 

proposed approach in this working paper. The primary steps in our approach are highlighted 

(Steps 1-5) in this figure and are described in the methods section of this working paper. 

A case study of our proposed approach on Cobb Seamount 

We use data collected during a scientific visual survey of Cobb Seamount in 2012 to illustrate 

our quantitative method for identifying VMEs and areas likely to be VMEs on seamounts in 

the NE Pacific Ocean. At present, Cobb Seamount is the only seamount in the NPFC CA that 

has been visually surveyed by Canada. Fisheries and Oceans Canada (DFO) and the United 

States National Oceanographic and Atmospheric Agency (NOAA) led a joint survey of the 

seamount in 2012 (Curtis et al. 2015). The survey characterized the benthic community 

structure and quantified the distribution of observed VME indicator taxa. 17 of the coral taxa 

observed were on the NPFC’s list of VME indicator taxa (Curtis et al. 2015). 

METHODS 

VME indicator taxa  

We use the four groups of corals recognized by NPFC as VME indicator taxa for identifying 

areas that are VMEs and likely to be VMEs in the NE part of the NPFC CA; the orders 

Antipatharia (black corals), Scleractinia (stony corals), and Alcyonacea (soft corals and 

gorgonian corals). The NPFC recognizes gorgonian and soft corals as separate groups and they 
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can be split into taxonomically valid groups using a family level of identification. For the North 

Pacific Ocean, Miyamoto et al. (2017) list gorgonian coral families as Anthothelidae, 

Paragorgiidae, Corallididae, Keroeididae, Acanthogorgiidae, Plexauridae, Gorgoniidae, 

Chrysogorgiidae, Primnoidae, and Isididae and non-gorgonian soft-coral families as 

Clavulariidae, Alcyoniidae, Nephtheidae, Nidaliidae, and Paralcyoniidae. 

 

Study area 

We apply our proposed method as a case study to identify VMEs and areas likely to be VMEs 

on Cobb Seamount, which is in the NE part of the NPFC CA, close to Canada’s domestic 

waters at 46° 44′ 24″ N, 130° 48′ 0″ W (Figure 2). Cobb Seamount is a 27 million year old 

symmetrical and terraced guyot with a centrally located pinnacle (Budinger 1967) that rises 

from a base of 2,743 m to within 24 m of the surface (Parker & Tunnicliffe 1994), with an area 

of approximately 824 km2 (Budinger 1967). The seamount flanks average 12° in slope and are 

marked by four terraces (Budinger 1967). Cobb Seamount was discovered in 1950 and has 

been the site of biological, geological, and oceanographic research, as well as several 

commercial fisheries, including sablefish (A. fimbria). The history of Cobb Seamount and 

details of the methodology and data collected during a scientific visual survey led jointly by 

DFO and NOAA in 2012 are described in Curtis et al. (2015) and Du Preez et al. (2015). 

 

The primary aim of the scientific survey in 2012 was to characterize the benthic community 

structure. In summary, DFO used a customized Deep Ocean Engineering Phantom remotely 

operated vehicle (ROV) capable of diving to approximately 220 m, and NOAA deployed a 

SeaBED-class autonomous underwater vehicle (AUV) capable of diving to 1,400 m. Curtis et 

al. (2015) describe the survey, including specifics of the submersible setups, cameras, 

deployments, and sampling design, and Du Preez et al. (2015) provide a photo-documented 

checklist of species observed at Cobb Seamount in 2012. 

 

Overall, 144 benthic taxa were observed from 12 DFO ROV and 4 NOAA AUV transects 

carried out from 34 m to 1,154 m in depth. The taxa with the greatest densities on the Cobb 

Seamount plateau (<225 m depth) included the stony coral Desmophyllum dianthus, the 

brachiopod Laqueus californianus, colonies of Stylaster spp. hydrocorals, and annelids. At 

greater depths (>435 m) on the AUV transects, a bamboo coral Lepidisis sp., the black corals 

Bathypathes sp. and Lillipathes cf lillei, and an unidentified black coral species (Antipatharia 

sp. 1, as described in Du Preez et al. 2015), were among the more abundant taxa. Sand, boulders 

and creviced rock habitats were more prevalent on Cobb Seamount’s plateau, with creviced 

bedrock being more common at depths >435 m. 

 

Video from the DFO ROV’s cameras was recorded continuously throughout 12 dives, from the 
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time of deployment to retrieval. Cameras on the AUV were configured to produce orthogonal 

images of the seafloor. The AUV was programmed to maintain a height of approximately 3 m 

above the seafloor and was programmed to take a photograph every 10 seconds during survey 

transects. Overall, 8,321 photos were collected along the four AUV transects, most of which 

were of sufficient quality to quantitatively record species and habitat data. All photos from the 

AUV’s port side camera were annotated to document the occurrences of discernable taxa, with 

the exception of brittle stars (Curtis et al. 2015). 

 

Figure 2. Study area showing the NE part of the NPFC Convention Area (dashed line 

boundary) and location of Cobb Seamount (inset map).  

General approach to identifying VMEs 

The main steps in our quantitative approach (Figure 3) are: 1) identify a quantitative threshold 

that indicates where VMEs are likely to occur; 2) develop predictive models and generate 

probability maps of suitable habitat for VME indicator taxa; 3) apply the threshold to the 

probability maps to identify areas likely to be VMEs, 4) prioritize those areas for gathering 

visual data; and 5) combine the predictive models, visual data, and other available scientific 

information to determine if the VME criteria (FAO 2009) are met. 
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Figure 3. General steps in our proposed method to identifying VMEs and areas likely to be 

VMEs. 

Step 1. Identify a quantitative threshold for VME occurrence 

The objective of our threshold analysis is to identify the proportion of transect where VME 

indicator taxa occur (independent or explanatory variable on the x-axis) that corresponds to the 

greatest richness of associated benthic taxa (dependent or response variable on the y-axis). We 

assume that areas with greater species richness are also areas with a greater diversity of micro-

habitat types and thus structural complexity provided by VME indicator taxa presence, one of 

FAO’s five criteria for identifying VMEs (FAO 2009). We used the proportion of transect 

where NPFC VME indicator taxa occur as our threshold variable so it can be applied to the 

output of our predictive habitat models (PHMs) that predict the probability of suitable habitat 

of the four VME indicator taxa, as well as observations of those VME indicator taxa in our 

visual data (Curtis et al. 2015). Hereafter, we refer to the threshold calculated from the visual 

survey data as the “visual occurrence threshold”, which is defined at the proportion of transect 

where one or more VME indicator taxa occur. 

Data requirements for visual occurrence threshold 

The visual occurrence threshold is based on the relationship between the proportion of transect 

where VME indicator taxa occur (independent variable) and the species richness of associated 

benthic taxa (dependent variable). This generally requires data to be collected at a site where 

Step 1. Identify a quantitative threshold for VMEs 
and areas likely to be VMEs

Step 2. Develop predictive models and maps of the 
probability of suitable habitat for VME indicator 
taxa

Step 3. Identify areas likely to be VMEs by applying 
the threshold to maps of the probability of suitable 
habitat

Step 4. Gather supporting visual data in areas likely 
to be VMEs

Step 5. Determine if VME criteria are met by 
combining thresholds, predictive models, and visual 
data
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NPFC VME indicator taxa are present in varying abundances, and where the presence of 

associated taxa has been annotated. When different sources of visual data are available the 

collection methods should be compared to ensure there are no detection biases and that 

biodiversity data can be pooled. 

Visual occurrence threshold analysis 

For our case study, we used the fully annotated dataset generated from the analysis of AUV 

photos collected at Cobb Seamount in 2012 (Curtis et al. 2015). Although ROV photos and 

video records were also collected during that survey, the ROV survey was designed to capture 

close-up imagery at the seafloor (a 0.16 m2 area compared to the 1.8 m2 – 21.2 m2 area of the 

AUV images) and did not reliably capture VME indicator taxa for annotation (Cobb et al. 2015). 

Due to detection biases among different survey methods, biodiversity annotations generated 

from the resulting imagery should not be pooled for analyses (Chu & Leys 2010). Thus, we did 

not use visual data from the ROV in our analyses. 

 

We subdivided the four AUV transects (average length = 1,806 m) into 50 m sub-transect 

segments for the threshold analysis and followed general methods outlined in Rowden et al. 

(2020). Sub-transect segments were included in our analyses if they contained 3 or more images.  

 

For each sub-transect segment (n=136), we calculated the proportion of that segment where 

any VME indicator taxon was observed by dividing the number of images with a VME 

indicator taxon present by the total number of images in that segment. The proportion of 

transect where VME indicator taxa occur (the visual occurrence threshold) was calculated as: 

 

proportion of transect where VME indicator taxa occur = 

# of images with VME indicator taxa per sub-transect

# of images per sub-transect
  

 

We used a piecewise regression to identify the breakpoint, or threshold, in the proportion of 

transect where one or more VME indicator taxa occurred (independent variable) as a predictor 

of the richness of associated taxa (dependent variable). A piecewise regression, also known as 

segmented or broken-stick regression, fits two linear regressions through a dataset and 

identifies a breakpoint at the intersection between the two regressions. We use this breakpoint 

as the threshold at which the richness of associated taxa reaches a plateau beyond which 

increasing the proportion of transects where at least one VME indicator taxa occurred no longer 

corresponds to higher biodiversity (see discussion in Rowden et al. 2020). To account for 

uncertainty due to our limited data we used the upper 99 % CI as our final threshold to identify 
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VMEs and areas likely to be VMEs. To determine if our data follow a threshold response and 

not a simple linear response, we used an ANOVA to compare the piecewise regression and 

linear regression.  

Step 2. Develop predictive models for VME indicator taxa 

Predictive habitat models (PHMs), also referred to as species distribution models, can be used 

to predict areas of high habitat suitability for marine species of interest. In general, PHMs are 

statistical methods that relate known presences of a species to a set of environmental variables. 

Models can then be used to extrapolate where species are likely to occur within the extent of 

the environmental variables, including in areas where biological survey data are lacking 

(Franklin 2010). Model outputs can also be used to generate hypotheses about the factors that 

influence species distributions, such as key environmental drivers, which can help identify 

priority areas for future data collection. Prediction maps generated from a standard PHM are 

usually presented as a logistic index with values ranging from 0 to 1. Depending on the model 

and data used, the logistic index is commonly interpreted as a probability of presence or as an 

index of habitat suitability, with predictions corresponding to low (0) and high (1) probability 

of presence or habitat suitability. We interpret the output of our four models as the probability 

that there is suitable habitat for the corresponding VME indicator taxon and we assume that the 

taxa can exist where there is suitable habitat. 

Data requirements for PHMs 

PHM development requires a dataset of georeferenced species presences as well as gridded 

environmental data layers representing variables that influence the distribution of the modeled 

species. In addition, data on species absences – areas where a species has been observed to not 

exist – can also be valuable. The environmental data should cover the entire extent of the area 

of interest, and the species presence/absence data should ideally be broadly distributed across 

the spatial and environmental gradients in the same area. 

 

For our study, we use the Maximum Entropy model (MaxEnt) to develop PHMs for each of 

our four VME indicator taxa. MaxEnt is a machine learning, statistical method that originated 

in the fields of statistical mechanics and information theory (Phillips et al. 2006). MaxEnt has 

also been the most commonly applied PHM for examining distributions of CWCS when only 

presence data are available which is most often the case for deep-sea taxa (Winship et al. 2020). 

By default, MaxEnt uses ‘pseudo-absences’ sampled from the surrounding background area to 

generalize the habitat conditions of an area; presence is unknown at the location of these 

background sampled locations. Although MaxEnt is known as a ‘presence-only’ model by 
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default, absence data, instead of ‘pseudo-absences’, can be used with the MaxEnt algorithm. 

For our PHMs both presence and absence observations were sampled mostly within the 

adjacent exclusive economic zones of Canada and the United States of America. The 

availability of presence and absence observations of VME indicator taxa allows for the 

exploration of alternative models (e.g. GAM, Boosted Regression Trees, Random Forest 

models) in future iterations of PHM development.  

Species records 

Presence records – We compiled a large dataset of georeferenced species records of NPFC’s 

VME indicator taxa in the NE Pacific Ocean (Figure 4a). Records were queried as of September 

2021 and come from scientific surveys data and museum records deposited in (1) the NOAA 

deep-sea coral data portal (https://deepseacoraldata.noaa.gov/), (2) standardized bottom trawl 

catch data from research surveys in the Gulf of Alaska, Aleutian Islands and eastern Bering 

Sea, (3) standardized bottom trawl catch data from DFO research surveys in British Columbia, 

Canada, and (4) standardized bottom trawl catch data from research surveys on the U.S. West 

Coast of Washington Oregon and California (Stauffer 2004, Nottingham et al. 2018). 

 

Records were identified to various levels of taxonomy and required up-to-date taxonomy 

verification with the World Register of Marine Species (WoRMS, Horton et al. 2021). After 

updated taxonomy was appended to the records, records with at least an order (black corals, 

stony corals) or family (gorgonian corals, non-gorgonian soft corals) level of identification 

were pooled for use as the presence data for each of their respective PHMs. Final sets of 

presence records used for PHM model development were also spatially restricted to those 

occurring within the four marine ecoregions of the world (MEOW) that characterize the 

oceanographic conditions from the Gulf of Alaska to the West Coast of North America 

(Spalding et al. 2007). No commercial bycatch records were included in the data used for PHMs. 

 

Absence records – Multiple depth-stratified research trawl surveys record the occurrence of all 

species captured over the latitudinal extent of our study area. We generated absence records 

(Figure 4b) from the fishing events that did not yield a species corresponding to our VME 

indicator taxa (e.g. Beazley et al. 2018, Chu et al. 2019). Because the trawl surveys occurred 

only on the continental shelf and slope, there is a sampling bias in location of the absence 

records relative to the presence records which include observations of VME indicator taxa at 

several offshore seamounts. With the exception of visual data from Cobb Seamount (Curtis et 

al. 2015), we prioritized keeping as many of these rare seamount observations in our models 

as possible and addressed this sampling bias by restricting the inclusion of offshore presence 

records to those occurring within the sampling depth range of the absence records which 

https://deepseacoraldata.noaa.gov/
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sampled a maximum depth of 1,600 m. 

 

Figure 4. Species occurrence data used in PHM models. (a) Distribution of VME indicator 

taxa presence records and (b) Distribution of trawl absence data. Records were 

geographically limited to those occurring within four marine ecoregions and the adjacent 

international waters (Spalding et al., 2007). Seamount areas are from Harris et al. (2014). 

Note that the four groups of VME indicator taxa are plotted in panel (a) but are not visible 

because of the overlapping points. 

Environmental data layers 

We used the gridded environmental data from Chu et al. (2019) developed by the North Pacific 

Marine Science Organization (PICES) Working Group 32 on Biodiversity of Biogenic Habitats, 

which were created for the development of PHMs for the North Pacific Ocean (Chu et al. 2019, 

2020). This set of 30 environmental layers are gridded at a 1 km2 resolution and include 

bathymetry-derived variables, physiochemical variables, and oceanographic properties that can 

be strong predictors of benthic species distributions. Please refer to Table 1 in Annex 1 for a 

summary of details, resolutions, and units associated with the environmental data layers. 

Davies and Guinotte (2011), Chu et al. (2019), and Georgian et al. (2021) provide general 

background on the data layers, original data sources, processing steps involved in their creation, 

and examples of their general use in PHM development for VME indicator taxa and identifying 

VMEs in the Pacific Ocean. 

MaxEnt modeling settings 

We followed the general MaxEnt model workflow described by Chu et al. (2019) and 

developed a PHM for each of the four VME indicator taxa. Species data were spatially thinned 
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to include only one record per 1 km2 grid cell. We applied several best practices to test initial 

models and to prevent general overfitting (e.g. Merow et al. 2013, ICES 2021). Collinearity 

among predictors was addressed by examining variance inflation factors (VIF) and iteratively 

reducing the set of environmental data layers used for each model until the final subset of 

variables all had VIF < 10 (Table 1). Model performance was assessed using the area under the 

receiver operating characteristic curve (ROC) (AUC, Phillips et al. 2006). AUC values of 1.0 

indicate a model that can perfectly predict presence and absences and 0.5 indicates a model 

that performs no better than random. We tested a range of MaxEnt regularization coefficient 

values (to balance model overfitting, see Merow et al. 2013) and set the value to 1.0 which 

yielded models with the highest AUC. We used five-fold cross validation to assess how well 

each model performed. Occurrence (presence and absence) data was randomly sampled and 

split into five equal data partitions and models were trained on four partitions and tested with 

the remaining fold; this procedure was repeated five times with a unique partition used for 

testing in each iteration. Final models used the entire set of species presences and absences 

from each taxon to generate maps of presence probability. 

Table 1. Input data used in MaxEnt models: Number of 1 km2 gridded presence and 

absence records, and the subset of environmental data layers used as predictors. BPI is the 

Bathymetric Position Index at the corresponding scale in metres, PAR is the 

Photosynthetically Active Radiation, and SST is Sea Surface Temperature. Table 1 in Annex 

1 provides details on the full set of environmental variables considered for use in PHM 

development. 

VME taxa Presence 

records 

Absence 

records 

Environmental variables included in final model 

Black corals 497 22,145 Chlorophyl-a, cross-sectional curvature, current angle, current aspect, current direction, 

east-facing aspect, north-facing aspect, oxygen, PAR, particulate organic carbon, regional 

current velocity, slope, SST, BPI20000, vertical flow velocity, roughness 

Stony corals 291 22,145 

 

Omega Aragonite, Chlorophyl-a, cross-sectional curvature, current aspect, current 

direction, east-facing aspect, north-facing aspect, oxygen, PAR, particulate organic 

carbon, regional current velocity, slope, SST, BPI20000, roughness 

Gorgonian corals 1,378 22,145 

 

Omega Aragonite, Chlorophyl-a, current direction, east-facing aspect, north-facing 

aspect, oxygen, PAR, particulate organic carbon, regional current velocity, slope, SST, 

BPI5000, BPI20000, roughness 

Non-gorgonian 

soft corals 

611 22,145 

 

Omega Aragonite, Chlorophyl-a, cross-sectional curvature, current direction, current 

angle, east-facing aspect, north-facing aspect, oxygen, PAR, regional current velocity, 

slope, SST, BPI20000, roughness 
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Spatial uncertainty in the model predictions 

To examine spatially-explicit measures of uncertainty in the model predictions, we applied a 

non-parametric, bootstrap resampling procedure before running the final models for each of 

the four VME indicator taxa (e.g. Anderson et al. 2017, Rowden et al. 2017, Chu et al. 2019). 

For a model’s occurrence dataset, observations were randomly sampled with replacement to 

match the ratio of presence and absence records respective to their model (Table 1); each 

bootstrapped random sample was used to generate a model prediction. This process was done 

n=100 times which allowed a mean and standard deviation (SD) to be calculated among model 

runs where areas with high SD indicated higher uncertainty associated with model predictions. 

For each grid cell, we calculated a confidence interval (CI) using the mean and SD generated 

from the 100 model runs. We use 99% CI values for our steps where we applied the visual 

occurrence threshold to the mapped prediction. 

Validating the model predictions with the visual survey data 

We use the independent visual survey data from Curtis et al. (2015) to test how well the models 

perform when compared to an independent dataset. We use AUC as a metric of general 

performance but calculate additional metrics. Percent correctly classified (PCC) is the 

proportion of the visual data correctly classified into presence and absence categories. 

Sensitivity calculates the proportion of the visual data presence records that were correctly 

classified. Specificity calculates the proportion of the visual absence records that were correctly 

classified. For PCC, sensitivity, and specificity to be calculated, the logistic predictions need 

to be converted into binary presence-absence values. Therefore, we examined ROC plots 

(ANNEX 1, Figure 1) and used a value that maximizes sensitivity and specificity for the binary 

conversion. 

Step 3. Determine areas likely to be VMEs 

We use model predictions to determine areas likely to be VMEs, following the decision tree in 

Figure 1 (NPFC 2021b).  We apply the visual occurrence threshold to the mean of the four 

NPFC VME indicator taxa PHMs to quantitatively determine which areas meet the criterion of 

being likely to be a VME. Areas where the PHM value is equal to or greater than the visual 

occurrence threshold are identified as areas likely to be VMEs. 

 

The aerial extent of areas likely to be VMEs in our analyses is 1 km2 because the environmental 

variables used to produce the PHM predictions were gridded at a resolution of 1 km2 (Chu et 

al. 2019). Based on these methods areas likely to be VMEs will be defined as areas where the 

mean of the four VME indicator taxa predicted model values is equal to or greater than the 
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visual occurrence threshold. 

Step 4. Use supporting visual data in areas likely to be VMEs 

Following the NPFC decision tree on identifying data for VMEs (Figure 1), areas that are likely 

to be VMEs become high priority areas to undertake visual surveys. If visual data do not exist 

or cannot be collected, then an area cannot be confirmed to be a VME. To illustrate our 

proposed methodology, we use the visual data collected at Cobb Seamount in 2012 by Curtis 

et al. (2015). 

Step 5. Determine if VME criteria are met 

The criterion used to identify VMEs in our approach is when the proportion of a transect where 

one or more VME indicator taxa occur in the visual data is equal to or greater than the visual 

occurrence threshold, and thus meets the FAO criterion of structural complexity (FAO 2009).  

 

We first segmented the visual data into 50 m sub-transects. Then we calculated the proportion 

of those segments where VME indicator taxa were present using the equation in step 1. In the 

absence of comprehensive visual data to delineate the areal extent of the VME, this step in our 

methodology uses the same resolution (1 km2) as that used to identify areas that are likely to 

be VMEs in Step 3. If one or more segments of the transect within a 1 km2 area was equal to 

or greater than the visual occurrence threshold, then a VME was identified for that 1 km2 area. 

Applying the visual occurrence threshold in this manner is similar to our method of identifying 

areas likely to be VMEs but uses visual data instead of the PHMs’ predicted values.  

RESULTS & DISCUSSION   

The primary goal of this working paper is to propose and receive feedback on our approach 

before applying it to identify VMEs and areas that are likely to be VMEs in the NE part of the 

NPFC’s CA. We propose one quantitative method of VME identification that integrates model 

predictions and visual data in a manner that aligns with the SWG VME’s framework, the 

precautionary approach, the Convention, and the research plan of NPFC’s Scientific 

Committee. We recognize that other methods have (e.g. Miyamoto & Yonezaki 2019) and will 

be applied to identify VMEs in the NPFC’s CA. Our approach factors in the data limitations in 

this region which dictates how available visual data can be analyzed for identifying and 

modelling VME areas in the NE part of NPFC’s CA where Canada fishes for sablefish (A. 

fimbria).  

 

We use data from Cobb Seamount to illustrate an initial application of our methodology which 
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identifies 1 km2 areas that are likely to be VMEs at depths ranging from 18 m to 1,573 m, and 

one VME on the northwest part of Cobb Seamount. With future iteration of our approach 

through peer review and feedback, we aim to identify VMEs and areas that are likely to be 

VMEs in the NE part of the NPFC’s CA during the coming years.  

 

General approach to identifying VMEs 

Step 1. Identify a quantitative threshold for VME occurrence 

Visual occurrence of VME indicator taxa was calculated for 50 m divisions of the AUV 

transects on Cobb Seamount (n=136). Associated species richness ranged from 1 to 19 and the 

proportion of transect where VME taxa occurred ranged from 0 to 1, where 1 indicated at least 

one of the four VME indicator taxa was present in all images for that transect segment (Figure 

5). All four VME indicator taxa were represented in the AUV data (see Table 4 in Annex 3 for 

a list of observed VME taxa). 

 

A general comparison of model fit showed the piecewise regression (R2=0.19, AUC=678.35) 

fit our data better than a linear regression (R2=0.13, AUC=686.54) which indicates a threshold 

relationship occurring in our data. A break point was resolved for associated species richness 

where the proportion of transect where one or more VME indicator taxa occurred was 0.7 (99% 

CI range of 0.54-0.86) from the piecewise regression (Figure 5).  

 

We use the upper 99% CI value of the visual occurrence threshold, which is 0.86, in the 

following methods to account for uncertainty in the threshold analysis. See Annex 2 for 

alternative results using a visual occurrence threshold of 0.7. 

 

We expect that the relationship between the amount of structurally complex habitat, which we 

estimate using the proportion of transect where the NPFC’s VME indicator taxa occur, and the 

associated species richness increases steeply until the number of species that can be supported 

by the complex habitat begins to reach a threshold and then plateaus (as discussed in Rowden 

et al. 2020). 
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Figure 5. Proportion of transect where the NPFC’s VME indicator taxa occur vs associated 

species richness from Cobb Seamount AUV transects divided into 50 m segments. A 

comparison of anova tables between piecewise (red, R2 = 0.193) and a linear regression 

(blue, R2=0.131) models fitted to the data indicates a significant breakpoint occurs at 0.7 (p 

<0.05).  

Step 2. Develop predictive models for VME indicator taxa 

All MaxEnt models developed using presence-absence data performed well with AUC scores 

ranging from 0.86-0.91 among modelled taxa (Table 2). The most important predictors varied 

slightly among models but all shared dissolved oxygen among their top two ranked predictors. 

Additional importance predictors included water column properties associated with surface 

water conditions (photosynthetically active radiation, particulate organic carbon, sea surface 

temperature, chlorophyll-A), seafloor characteristics (roughness), and broad scale currents 

(regional current velocity). The slight differences among the most important predictors also 

resulted in differences in the general footprint of areas predicted to have a high habitat 

suitability varied among models (Figure 6, Figure 1 in Annex 1). However, shared areas of high 

habitat suitability among models were generally concentrated along the continental shelf in 

domestic waters and mostly at seamount areas within the international waters of the NPFC CA 

(Figure 6). These results mirror those of Chu et al. (2019) who used a similar PHM approach 

but focused within a smaller study area inside Canadian domestic waters. The complimentary 

findings reinforce the importance of the expansive oxygen minimum zone in the Northeast 

Pacific ocean and its influence on the distribution of VME indicator taxa in this region.  
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Table 2. Summary of final MaxEnt model parameters. Training AUC and the top three most 

important predictor variables based on their relative importance in each model are 

presented. Values are the mean among the 100 bootstrap resampling model runs that used 

the entire occurrence dataset. Variable acronyms: PAR – photosynthetically active radiation, 

POC – particulate organic carbon, BPI20000 – bathymetric position index at a 20,000 m 

scale, Regfl – Regional current velocity. Chl-a – Chlorophyl-A. SST – Sea Surface 

Temperature. The full ranked list of variable importance is provided in Table 2 of Annex 1. 

VME group Training 

AUC 

1st ranked 2nd ranked 3rd ranked 

Black corals 0.90 Oxygen (48%) PAR (19%) Regfl (7%) 

Stony corals 0.90 Oxygen (14%) Chl-A (13%) SST (13%) 

Gorgonian corals 0.85 PAR (37%) Oxygen (16%) BPI20000 (11%) 

Non-gorgonian soft corals 0.92 Roughness (36%) Oxygen (16%) POC (8%) 

 

 

Figure 6. MaxEnt predictions of habitat suitability index (HSI) for the four NPFC VME 

indicator taxa in the NE Pacific Ocean. The majority of high habitat suitability areas in the 

NPFC CA (boundary indicated by dash line) occur at seamounts. Model predictions have 

been restricted to the maximum depth of 1,600 m reflected in the species data. 

Transect lines from the visual surveys intersected with only 13 grid cells in the PHM 

predictions which limits the extent at which PHM performance can be tested with the available 
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independent data. Results are still informative and illustrate the process of validation with 

independent visual survey data. Performance varied among models with stony corals and 

gorgonian corals performing better than those for black corals and non-gorgonian soft corals 

(Table 3). However, single classification errors currently have a relatively large influence on 

validation testing because of their relative proportion to the sample size (n=13). Additional 

factors such as differences in detectability and catchability between the data used to train the 

PHMs (acquired mostly from trawl surveys) and the visual survey data could influence model 

validation. Ideally, additional data could be acquired from visual surveys designed using the 

model predictions that would allow a more comprehensive validation of model performance. 

 

Identifying areas that are likely to be VMEs using PHMs will be strongly influenced by the 

taxa being modelled. Although our PHM models performed well, the NPFC’s VME indicator 

taxa groups (black corals, stony corals, gorgonians and non-gorgonian soft corals) are 

taxonomically broad and capture a wider range of habitat conditions than what species-specific 

PHMs would resolve. Ideally, we would develop PHMs for taxa at lower taxonomic levels (e.g. 

species or family) which could reduce the amount of species-specific habitat requirements 

being pooled into a single model. This could improve how well our PHMs predict the 

occurrence of VME indicator taxa, which were identified to lower taxonomic levels in the 

visual data collected by Curtis et al. (2015) (see Annex 3). 

Table 3. Model performance statistics when tested with the visual survey data. AUC is the 

area under the receiver operating characteristic curve. Test AUC is the average AUC among 

the five folds of data used for internal model cross validation. Training AUC is the average of 

the 100 bootstrapped model runs used to generate the final model predictions. Validation 

AUC is calculated using the independent visual survey data to test the average prediction 

from the 100 bootstrap model runs. Additional validation metrics presented are: PCC which 

is the percentage of the observations that were correctly classified (n=13), sensitivity is the 

proportion of true positives correctly classified by a model, and specificity is the proportion of 

true absences correctly classified.  

Model Test 

AUC 

Training 

AUC 

Validation 

AUC 

PCC Sensitivity Specificity 

Black corals 0.88 0.90 0.53 0.54 0.5 0.67 

Stony corals 0.87 0.92 0.92 0.92 1 0.92 

Gorgonian corals 0.86 0.85 0.82 0.62 0.64 0.5 

Non-gorgonian soft corals 0.91 0.92 0.67 0.77 0.89 0.5 
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Step 3. Determine areas likely to be VMEs 

Areas that are likely to be VMEs in the NE Pacific region of the NPFC CA occur almost 

exclusively at seamounts covering a total area of 3,137 km2 (Figure 7).  

 

On Cobb Seamount, a total of 83 1-km2 grid cells were identified as areas likely to be VMEs 

(Figure 8), resulting in a total area of 83 km2. The depth range for this area is from the pinnacle 

of Cobb at 18 m to 1,573 m. 

 

Figure 7. Areas likely to be VMEs in the Eastern North Pacific based on the mean VME 

indicator taxa predicted model value meeting or exceeding the visual occurrence threshold 

of 0.86. Seamount areas are from Harris et al. (2014). Note – only PHM predictions that 

meet or exceed the threshold in the NPFC CA (international waters) are shown. 
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Figure 8. Areas likely to be VMEs on Cobb Seamount based on the mean VME indicator 

taxa predicted model value meeting or exceeding the visual occurrence threshold of 0.86. 

Step 4. Gather supporting visual data in areas likely to be VMEs 

Visual data are available for two of the 83 grid cells identified as areas likely to be VMEs on 

Cobb Seamount. This includes data from AUV transects 2 and 4 from the 2012 Cobb Seamount 

visual survey (Figure 9). 
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Figure 9. Supporting visual data used to identify VMEs on Cobb Seamount (green). AUV 

transects are from the 2012 Cobb visual survey (see Curtis et al. 2015). Areas likely to be 

VMEs (red) were identified by using predictive models of VME indicator taxa and applying a 

visual occurrence threshold of 0.86.  

Step 5. Determine if VME criteria are met 

The overlapping portion of transects AUV 2 and AUV 4 with the areas likely to be VMEs was 

divided into 12 and 13 sub transect segments of 50 m, respectively. The proportion of transect 

where one or more VME indicator taxa occur ranged from 0.06 to 1 (Figure 10). AUV transect 

2 does not contain segments that meet the visual occurrence threshold and is therefore not 

identified as a VME (Figure 10a). 

 

AUV 4 does contain two segments that meet the visual occurrence threshold. Sub-transect 

segments number 2 and 3 have a proportion of transect where one or more VME indicator taxa 

occur of 1 and 0.86, respectively (Figure 10b). Therefore, this portion of AUV 4 meets the 

criterion of being a VME. The 1-km2 grid cell that this transect overlaps is therefore used to 

delineate the boundary of this VME. 
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Figure 10. Proportion of visual transect where one or more VME indicator taxa occur 

calculated per 50 m segment that overlaps with areas likely to be VMEs from (a) AUV 

transect 2 and (b) AUV transect 4 from the 2012 Cobb Seamount visual survey. The visual 

occurrence threshold is equal to 0.86 (dashed line) and transects with at least one segment 

that is equal to or greater than this threshold meets the criteria for a VME. There are two 

sub-transect segments where the proportion of transect with one or more VME indicator taxa 

occur meets or exceeds our visual occurrence threshold (AUV 4 sub-transect segments 2 

and 3).  

Our preliminary results for this Cobb Seamount example suggest one preliminary VME 

identified on the northwest part of Cobb Seamount at a depth of approximately 600 m with an 

area of 1km2 (Figure 11). The two 50-m sections of transect AUV 4 that fall at or above our 

visual occurrence threshold had at least 16 colonies of 3 species of corals. Associated benthic 

epifauna included at least two species of fish, 5 species of sea stars, 2 species of sponges, and 

1 species of decapod. Brittle stars were also common. 
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Figure 11. Preliminary areas that are likely to be VMEs (red) and one area that is a VME 

(yellow) using our proposed methodology applied to Cobb Seamount. 

Fisheries interaction 

In the NE part of the NPFC’s CA, fishing activities are currently limited to a Canadian 

commercial Sablefish fishery. The fishery uses longline hook and trap gear, and trawl gear is 

not permitted in the seamount fishery (DFO 2013). Sablefish landings concentrate over several 

seamounts in the CA including Eickelberg, Warwick, Corn, Cobb, and Brown Bear Seamounts. 

 

Canadian commercial Sablefish fishery landings data was obtained from the Fishery 

Operations System of DFO. Commercial fisheries data is protected as per Canada’s Access to 

Information Act and Privacy Act. Therefore, landing locations in this working paper (Figure 

12) were filtered to only display points where three or more vessels were reporting for a time 

and area of interest, also known as the “three boat rule.” 

 

By overlaying the Sablefish landing locations over the VMEs and areas likely to be VMEs on 

Cobb Seamount we see how the fishery is distributed compared to those areas and how they 

overlap (Figure 12). While the location of fishery landings in Figure 12 are approximate only, 

the true estimate of the fishery’s landings that overlap with VMEs and areas likely to be VMEs 

are summarized in Table 3. Based on data from 2006-2019, 38 % of the total Sablefish fishery 

landings on Cobb Seamount overlapped with the VME and areas likely to be VMEs (Table 3). 
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Fishing has occurred in 51% of the areas likely to be VMEs and in the one 1-km2 location 

identified as a VME. 

 

Figure 12. Preliminary VME area (yellow) and areas likely to be VMEs (red) overlayed with 

approximate sablefish fishery landings locations from 2006-2019 on Cobb Seamount, 

presented according to Canada’s “three boat rule.” Fishing locations in this map are limited 

to points where three or more vessels reported landings for a time or area of interest to 

preserve confidentiality. 

Table 3. Summary of Sablefish fishery landings overlapping with the preliminary areas 

identified as VMEs and areas likely to be VMEs. Fishery values are based on fishing records 

from the years 2006-2019 and include all species landed by the sablefish fishery, including 

incidental catch. 

Summary of Sablefish fishery interaction with 

preliminary areas  

Areas likely to 

be a VME 

VMEs  

Total sablefish fishery landings overlapping with the 

proposed area (sum in kg) 

18,919 1,399 

Percent of sablefish fishery landings overlapping with the 

proposed area 

38 % 2 % 

Percent of area that fishing occurs in 51 % 100 % 
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CONCLUSIONS 

In this paper, we propose one potential quantitative method to identify VMEs and areas likely 

to be VMEs in the NPFC CA. It is based on the current best available scientific data in the NE 

part of the NPFC CA and follows the SWG VME’s decision tree to identify data that can be 

used to identify VMEs (NPFC 2021b). The NPFC has identified a total of four VMEs in its 

CA, including areas on Koko and Colahan Seamounts (Miyamoto & Yonezaki 2019), but the 

approaches used to identify them are semi-quantitative in nature and not easily repeatable by 

other members. Also, because of differences in the availability of data, Miyamoto and 

Yonezaki’s (2019) approach is not readily applicable to the entire NPFC CA. We use PHM 

predictions and visual data from Cobb Seamount to demonstrate how our proposed 

methodology can be applied in the NPFC CA. 

 

We describe our proposed quantitative method and aim to revise it and then apply it to the NE 

part of the NPFC’s CA. The results of our case study on Cobb Seamount are preliminary and 

have no management implications; we are not recommending that these areas be identified as 

VMEs or areas that are likely to be VMEs. We also note that our proposed method may not 

identify all VMEs or areas likely to be VMEs; there may be areas in the NPFC’s CA that meet 

criteria for being identified as such using other methods and/or that draw on a different set of 

the FAO (2009) criteria. 

 

The application of quantitative methods (e.g. Kenchington et al. 2014, Morato et al. 2018, 

Rowden et al. 2020) for identifying VMEs in the NE part of the NPFC CA is currently 

constrained by general data availability. Additional visual surveys designed to collect 

community-level presence-absence data would strengthen the development of our PHMs and 

provide opportunities to validate our predictions. As more data are collected that can be 

incorporated into our approach, results can be iteratively updated through periodic review of 

our analyses. 

 

Next steps 

We welcome any comments or suggestion from NPFC members, observers, or stakeholders on 

the methodology we have outlined in this working paper to identify VMEs or areas likely to be 

VMEs in the NPFC’s CA. We will use these comments and suggestions to revise our approach 

and apply it in the NE part of NPFC CA. When we have revised and applied our method to 

parts of the NE Pacific Ocean, areas that are identified as likely to be VMEs will become 

priorities for visual surveys to assess the abundance and richness of benthic species. We are 

also committed to undertaking periodic reviews of our analyses as new data or information 

become available. 
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ANNEXES 

ANNEX 1 – Additional details on Predictive Habitat Models (PHMs) 

Table 1. PICES WG32 environmental data layers used in PHM development (from Chu et al. 

2019 and Chu et al. 2020). 

Variable name Units 
Native 

Resolution 
Reference 

Bathymetry-derived variables       

   Bottom depth metres 0.0083° Becker et al. 2009; Sandwell 

et al. 2014 

   Aspect – east-facing [eastness]   0.0083° Jenness 2013a 

   Aspect – north-facing [northness]   0.0083° Jenness 2013a 

   Curvature – General [gencurve]   0.0083° Jenness 2013a 
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   Curvature – Cross-Sectional [crosscurve]   0.0083° Jenness 2013a 

   Curvature – Longitudinal [longcurve]   0.0083° Jenness 2013a 

   Slope degrees 0.0083° Jenness 2013a 

   Roughness [VRM]   0.0083° Sappington et al. (2007) 

   Bathymetric position index [bpi] 

   (1000m, 5000m, 10000m 20000m) 

  0.0083° Jenness 2013b 

Chemical variables       

   Alkalinity μmol l-1 3.6 x 0.8–1.8° Steinacher et al. (2009) 

   Dissolved inorganic carbon [DIC] μmol l-1 3.6 x 0.8–1.8° Steinacher et al. (2009) 

   Omega - aragonite (ΩARAG) [arag]   3.6 x 0.8–1.8° Steinacher et al. (2009) 

   Omega - calcite (ΩCALC) [calc]   3.6 x 0.8–1.8° Steinacher et al. (2009) 

   Dissolved oxygen [oxygen] ml l-1 1° Garcia et al. 2014a 

   Phosphate μmol l-1 1° Garcia et al. 2014b 

   Silicic acid [dSi] μmol l-1 1° Garcia et al. 2014b 

   Nitrate μmol l-1 1° Garcia et al. 2014b 

   Particulate organic carbon [POC] G C m-2 yr-1 0.5° Lutz et al. (2007) 

Physical variables       

   Temperature °C 0.25° Locarnini et al. 2013 

   Salinity pss 0.25° Zweng et al. 2013 

   Current velocity — regional [regfl] m s-1 0.5° Carton et al. (2005) 

   Current velocity — vertical [vertfl] m s-1 0.5° Carton et al. (2005) 

   Current direction [curdir] degrees 0.5° Carton et al. (2005) 

   Current direction — relative to aspect 

[curapsect] 

degrees 0.5° Rooper et al. (2014) 

   3D current-surface angle [curang] degrees 0.5° Chu et al. (2019) 

Surface-layer properties       

   Chlorophyll-a [chl-a] mg m-3 4 km Aqua Modis (NOAA) 

   Photosynthetically active radiation [PAR] W m-2 4 km Aqua Modis (NOAA) 

   Sea Surface Temperature [SST] °C 4 km Aqua Modis (NOAA) 
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Table 2. The ranked, individual contributions of environmental predictors used in MaxEnt 

models of each VME indicator taxon. The ranked importance was calculated using a 

jackknife test that calculates model performance using AUC as variables are iteratively 

removed. Percent importance is presented as the mean of the n=100 bootstrapped model 

runs. Full variable names are described in Table 2 of Annex 3. 

Rank Black corals Stony corals Gorgonian corals Non-gorgonian soft corals 

 Variable % Variable % Variable % Variable % 

1 Oxygen 47.8 Oxygen 14.0 PAR 36.9 Roughness 36.0 

2 PAR 19.2 Chl-a 13.4 Oxygen 16.3 Oxygen 16.3 

3 Regfl 7.4 SST 13.3 BPI20000 11 POC 8.2 

4 SST 6.4 Roughness 10.8 Chl-a 7.4 PAR 7.3 

5 Curdir 3.2 BPI20000 9.4 POC 5.2 Chl-a 7.1 

6 Arag 2.4 POC 8.6 Eastness 4.0 Regfl 5.7 

7 POC 2.3 Northness 5.2 Arag 3.9 Eastness 3.3 

8 Chl-a 1.8 Curdir 5.2 SST 3.8 Arag 2.8 

9 Eastness 1.8 Slope 4.9 Curdir 2.5 BPI20000 2.6 

10 Slope 1.7 Regfl 4.2 Regfl 2.2 SST 2.5 

11 Northness 1.6 Eastness 3.5 Roughness 1.9 Slope 2.4 

12 BPI20000 1.5 Arag 3.4 Slope 1.6 Curdir 2.2 

13 Curaspect 1.0 PAR 2.8 Northness 1.2 Northness 1.8 

14 Roughness 0.9 Curaspect 0.9 Curapsect 1.0 Curaspect 1.4 

15 Vertfl 0.6 Crosscurve 0.4 BPI5000 0.6 Vertfl 0.2 

16 Crosscurve 0.3   vertfl 0.2 Crosscurve 0.1 

17 curang 0.1     curang 0.04 

18         

 



38 

 

 

Figure 1. MaxEnt predictions of habitat suitability index (HSI) for the four NPFC VME 

indicator taxa at Cobb Seamount. Bathymetric contour intervals are in 100 m increments. 

Model predictions have been restricted to a maximum depth of 1,600 m. 
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Figure 2. Receiver operating characteristic (ROC) curves used to assess performance with 

each of the PHMs. Independent presence and absence records of each of the VME indicator 

taxa observed in the visual survey data are used to validate the predictions from their 

respective PHM. We used the logistic prediction value that maximizes sensitivity and 

specificity to convert the logistic predictions into presence-absence binary values to calculate 

additional metrics presented in Table 3 of the main text. 
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ANNEX 2 – Alternative results for VMEs and areas likely to be VMEs 

 

Figure 3. Alternative preliminary areas using a visual occurrence threshold of 0.7 to identify 

areas that are likely to be VMEs (red) and two areas that are VMEs (yellow) using our 

proposed methodology applied to Cobb Seamount. 

Table 3. Summary of sablefish fishery landings overlapping with the alternative preliminary 

areas identified as VMEs and areas likely to be VMEs using a threshold of 0.7. Fishery 

values are based on fishing records from the years 2006-2019 and include all species 

landed by the sablefish fishery, including incidental catch. 

Summary of Sablefish fishery interaction with 

preliminary areas (threshold = 0.7) 

Areas likely to 

be a VME 

VMEs 

Total sablefish fishery landings overlapping with the area 

(sum in kg) 

51,168 

 

1,399 

Percent of sablefish fishery landings overlapping with the 

area 

65 % 2 % 

Percent of proposed area that fishing occurs in 30 % 50 % 
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ANNEX 3 – Visual data taxa 

Table 4. NPFC VME indicator taxa observed in the AUV photos from Cobb Seamount. 

VME group Species 

Gorgonian Swiftia simplex 

Gorgonian Isididae 

Gorgonian Primnoidae 

Non-gorgonian soft Coral Heteropolypus ritteri 

Non-gorgonian soft Coral Gersemia sp 

Black Coral Bathypathes sp 

Black Coral Lillipathes sp 

Black Coral Stichopathes sp 

Stony Coral Desmophyllum dianthus 
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