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Summary 

The Technical Working Group for Chub Mackerel Stock Assessment (TWG CMSA) in NPFC has 

decided to use an operating model (OM) for comparing the performance of different four 

assessment model candidates. In this paper, we report the updated results of tuned virtual population 

analysis (VPA) and state-space assessment model (SAM), candidate stock assessment models 

proposed by Japan, under the determined scenarios to include biological uncertainties on natural 

mortality, weight, and maturity. We changed a few model configurations from the previous analysis 

to avoid overfitting and stabilize parameter estimation, which will be useful to the application of 

these models to pseudo-data generated from OM. 

 

Note: Working document will be submitted to the NPFC 5th Meeting of Technical Working Group 

on Chub Mackerel Stock Assessment. This manuscript is an earlier draft version submitted to 

CMSA SWG OM02. Document not to be cited without author’s permission.
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Introduction 

The Technical Working Group on Chub Mackerel Stock Assessment (TWG CMSA) in NPFC 

determined that (1) the candidates of stock assessment models (VPA, ASAP, KAFKA, and SAM) 

would be compared by an operating model (OM), and (2) the operating model would be based on 

POPSIM-A (NPFC 2019). POPSIM-A uses a stock assessment model as an operating model and, 

therefore, input data are needed for the development of operating models by fitting stock assessment 

model candidates (Deroba et al. 2014). At the TWG CMSA03 and CMSA04, we showed the 

preliminary results of tuned virtual population analysis (VPA) and state-space assessment model 

(SAM), which are candidate models proposed by Japan (Nishijima et al. 2020, 2021a). Although 

Japan updated natural mortality coefficients (M) based on the re-estimation of von-Bertalanffy 

growth curve (Nishijima et al. 2021b), it has been agreed to use the previous M estimators with no 

update for the stock assessments in the OM development (NPFC 2021). Moreover, the weights to 

the respective scenarios and the performance measures for the comparison of stock assessment 

models have also been determined at the TWG CMSA04 (NPFC 2021). Here, we report the updated 

results of VPA and SAM with a few changes in model configurations under the determined 

scenarios.  

 

Model 

Virtual population analysis 

The VPA assumes no error in catch-at-age and conducts a backward calculation of population 

dynamics. We assumed that the age structure was from 0 to 6+ and used the Pope’s approximation 

(Pope 1972) to estimate fish numbers and fishing mortality coefficients: 

𝑁𝑎,𝑦 =  𝑁𝑎+1,𝑦+1 exp(𝑀𝑎) + 𝐶𝑎,𝑦 exp (
𝑀𝑎

2
) ,  if a ≤ 4 (1) 

𝑁5,𝑦 =
𝐶5,𝑦

𝐶5,𝑦 + 𝐶6+,𝑦
𝑁6+ exp(𝑀5) + 𝐶5,𝑦exp (

𝑀5

2
) , 

 

(2) 

𝑁6+,𝑦 =
𝐶6+,𝑦

𝐶5,𝑦 + 𝐶6+,𝑦
𝑁6+ exp(𝑀6) + 𝐶6+,𝑦exp (

𝑀6

2
) , 

 

(3) 

where Na,y is the fish number at age a in year y and Ca,y is the catch at age at age a in year y, and Ma 

is the natural mortality coefficients at age a. We here used Ma = 0.41 for all age classes under the 

scenarios A, C, and E, but instead used Ma = (0.57, 0.47, 0.38, 0.32, 0.28, 0.26, 0.24) from age 0 to 

6+ for the scenarios B, D, and F, because the TWG CMSA has agreed to turn M values back to 
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previous ones (NPFC 2021). Three types of weight-at-age and maturity-at-age were used: 

(weighted-)average for the scenarios A and B, the highest for the scenarios C and D, and the lowest 

for the scenarios E and F (Table 1). The fish numbers in the terminal year (2019) were calculated 

from the fishing morality coefficients in the terminal year:  

𝑁𝑎,2019 =  
𝐶𝑎,2019 exp (

𝑀𝑎

2 )

1 − exp (−𝐹𝑎,2019)
 .  (4) 

The fishing mortality coefficients except for the terminal year were computed from  

𝐹𝑎,𝑦 = − log {1 −
𝐶𝑎,𝑦

𝑁𝑎,𝑦
exp (

𝑀𝑎

2
)}  .  (5) 

We also assumed that the fishing mortality coefficient of plus group (A+) were identical to that of 

A−1: 

𝐹6+,𝑦 = 𝐹5,𝑦 .  (6) 

We used ‘ridge VPA’ to stabilize the terminal F estimates, which included a ridge penalty (squared 

term of estimated parameters) in the optimization, i.e., penalized likelihood (Okamura et al. 2017): 

minimize     (1 − 𝜆) ∑ ∑ [
ln(2𝜋𝜈𝑘

2)

2
+ 

{ln(𝐼𝑘,𝑦) − ln(𝑞𝑘𝑋𝑘,𝑦
𝑏𝑘 )}

2

2𝜈𝑘
2 ]

𝑦𝑘
+ 𝜆 ∑ 𝐹𝑎,2019

2  ,

5

𝑎=0

 (7) 

 where λ is the penalty coefficient (0 < 𝜆 < 1), Ik,y is the value of index k in year y, 𝜈𝑘
2 is the variance 

of index k, qk is the proportionality constant, and bk is the nonlinear coefficient between index k and 

its associated estimates Xk. We used all six abundance indices from Japan (fleets 2-5), China (fleet 

7) and Russia (fleet 9) following the agreement at the TWG CMSA03 (NPFC 2020). The Japanese 

abundance indices are of recruitment numbers (i.e. 𝑋𝑘,𝑦 = 𝑁0,𝑦) (summer survey index for fleet 2 

and autumn survey index for fleet 3) and of spawning stock biomass (i.e. 𝑋𝑘,𝑦 = 𝑆𝑆𝐵𝑦) (dip-net 

fishery index for fleets 4 and egg survey index for fleet 5), while the Chinese and Russian indices 

were used by assuming 𝑋𝑘,𝑦 = ∑ 𝑆𝑎,𝑦 × 𝐵𝑎,𝑦
6+
𝑎=0   (i.e., vulnerable stock size) based on the 

intersessional agreement (SWG_OM01 Summary), where Sa,y is the selectivity at age in year y and 

Ba,y is the biomass at age in year y. The selectivity at age was calculated so that the maximum fishing 

mortality coefficient was equal to one: Sa,y = Fa,y/max(Fy). We estimated bk,y to treat hyperstability 

or hyperdepletion for all of the six abundance indices. To avoid overfitting and stabilize parameter 

estimation, we assumed the variances 𝜈𝑘
2 were equal between the two recruitment indices, between 
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the two SSB indices, and between the Chinese and Russian fishery indices. We selected the penalty 

coefficient so as to minimize the absolute value of Mohn’s rho (Mohn 1999) of average fishing 

mortality coefficient in the five-year retrospective analysis: 

𝜌 =  
1

5
∑ (

�̂�2019−𝑖
𝑅 − 𝐹2019−𝑖

𝐹2019−𝑖
)

5

𝑖=1

 , (8) 

where �̂�2019−𝑖 is the estimate of average fishing mortality coefficients in year 2019−i using the full 

data. Therefore, the ridge VPA can reduce a retrospective bias to some extent. The selected λ were 

0.77 for the scenario A, 0.48 for B, 0.76 for C, 0.75 for D, 0.76 for E, and 0.39 for F. 

 

State-space assessment model 

The basic model structure of SAM followed the original one (Nielsen and Berg 2014). Numbers at 

age a in year y are described as: 

log(𝑁0,𝑦) = log(𝑁0,𝑦−1) + 𝜂0,𝑦,   (9) 

log(𝑁𝑎,𝑦) = log(𝑁𝑎−1,𝑦−1) − 𝐹𝑎−1,𝑦−1 − 𝑀𝑎−1,𝑦−1 + 𝜂𝑎,𝑦,    1 ≤ a ≤ 5 (10) 

log(𝑁6+,𝑦) = log(𝑁5,𝑦−1𝑒−𝐹5,𝑦−1−𝑀5,𝑦−1

+ 𝑁6+,𝑦−1𝑒−𝐹6+,𝑦−1−𝑀6+,𝑦−1) + 𝜂6+,𝑦 , 

 

(11) 

where ηa,y is the process error at age a in year y.  Although we applied the hockey-stick (HS) stock-

recruit relationship at the previous time (Nishijima et al. 2021b), estimation of HS stock-recruitment 

relationship makes parameter estimation unstable, which will pose difficulty to the application of 

SAM to pseudo data generated from OM. Therefore, we instead used a random walk of recruitment 

(eqn. 9) and applied a post-hoc analysis of stock-recruitment relationship in the same way as VPA 

(see below). We used the same six datasets (scenarios) of different natural mortality coefficients 

(M) and biological parameters as in VPA (Table 1). We assumed different magnitudes of the process 

errors for age 0 and older: 𝜂0,𝑦~𝑁(0, 𝜔𝑅
2 ), 𝜂𝑎,𝑦~𝑁(0, 𝜔𝑆,𝑎

2 ) (a > 0). We fixed the variance for the 

ages older than 0 at a small value (𝜔𝑆,𝑎
2 = 0.0001 ) because it was unlikely to converge when 

estimating this parameter. (Table 1).      The fishing mortality coefficient was assumed to follow the 

multivariate random walk: 

log (𝑭𝒚) = log (𝑭𝒚−𝟏) + 𝝃𝑦 , if 𝑦 ≠ 2011 (12) 

where 𝑭𝒚 = (𝐹1,𝑦, … , 𝐹𝐴−1,𝑦)𝑇 , 𝝃𝒚~MVN(0, 𝚺) , and 𝚺  is the variance-covariance matrix of 
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multivariate normal distribution (MVN). The diagonal elements of matrix 𝚺 were 𝜎𝑎
2, while off-

diagonal elements were assumed to be 𝜌|𝑎−𝑎′|𝜎𝑎𝜎𝑎′  (a ≠ a’). 𝜌|𝑎−𝑎′|  corresponded to the 

correlation coefficient of F between ages a and a’, and this assumption reflected the decrease in 

correlation with increasing age difference. In addition, we assumed 𝐹6+,𝑦 = 𝐹5,𝑦 in accordance with 

tuned VPA. The random walk was omitted in 2011 because the fishing effort on chub mackerel 

possibly greatly decreased since the previous year because of the Great East Japan Earthquake and 

tsunami in March 2011. We found positive retrospective bias in stock abundance and negative bias 

in fishing mortality if assuming a random walk in 2011 (Nishijima et al. 2020). 

     The SAM estimated the errors in catch-at-age in a lognormal fashion: 

log(𝐶𝑎,𝑦) = log (
𝐹𝑎,𝑦

𝐹𝑎,𝑦 + 𝑀𝑎,𝑦
(1 − exp(−𝐹𝑎,𝑦 − 𝑀𝑎,𝑦))𝑁𝑎,𝑦) + 𝜀𝑎,𝑦 (13) 

where 𝜀𝑎,𝑦~N(0, 𝜏𝑎
2). We used the six indices in the same way as the VPA: 

log(𝐼𝑘,𝑦) = log(𝑞𝑟𝑋𝑦
𝑏𝑘) + 𝜂𝑘,𝑦 , (14) 

where 𝜂𝑘,𝑦 is the measurement error of index k in year y: 𝜂𝑘,𝑦~𝑁(0, 𝜈𝑘
2). 

The SAM has to estimate many parameters. We then imposed the following constraints to 

stabilize estimation and avoid overfitting:  

𝜔𝑆,𝑎 = 𝜔𝑆  (∀𝑎 (𝑎 > 0)) ,   (15) 

𝜎0 = 𝜎1, 𝜎2 = 𝜎3 = ⋯ = 𝜎𝐴 ,   (16) 

𝜏2 = 𝜏3, 𝜏5 = 𝜏6+. 
 

(17) 

In addition, we added two constraints and assumptions on the fitting to the abundance indices so 

that the likelihood that a convergence error will be unlikely to occur when we will apply the SAM 

to pseudo data generated from OM. First, we assumed the variances 𝜈𝑘
2 were equal between the two 

recruitment indices, between the two SSB indices, and between the Chinese and Russian fishery 

indices, as in VPA. Second, we fixed at bk = 1 for the two SSB indices because these two indices 

were relatively proportional to SSB although either index (fleet 4, egg survey) were significantly 

nonlinear under some scenarios. As a sensitivity trial we also analyzed the models with bk = 1 for 

all abundance indices under the basecase scenarios (A and B), and showed its results in Figs. S1-2. 

In contrast to VPA, SAM regards state variables, such as numbers at age and F at age, as 

latent random variables, which requires complex, difficult numerical integral calculation for many 
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random effects. We therefore used Template Model Builder (TMB: Kristensen, Nielsen, Berg, 

Skaug, & Bell, 2016), an R package which enables fast computation for latent variable models. We 

also applied a bias correction method of mean values because random effects were estimated by 

logarithmic scale (Thorson and Kristensen 2016).  

 

Retrospective analysis  

We conducted a retrospective analysis as a diagnostic of robustness and estimation bias. However, 

the Chinese and Russian abundance indices have short years (five and four years, respectively), 

which led to an estimation error while removing recent-year data. We removed these indices when 

the available years became less than three in the retrospective analysis. We fixed λ in the equation 

7 for the retrospective analysis. We calculated Mohn’s rho for biomass, SSB, recruitment, and 

average fishing mortality coefficient. We showed results of other diagnostics regarding residuals in 

fitting of prediction to samples in supplementary figures (Figs. S3-14). 

 

Basic biological parameters and biological reference point 

We first calculated F%SPR and F0.1 as biological reference points that do not use a stock-

recruitment relationship. We estimated them using M at age, weight at age, maturity at age, and 

estimated F at age of each year. We also tried to calculate Fmax but could not find a solution for 

some years. We therefore excluded Fmax in this document.  

 We then computed basic biological parameters and biological reference points that are based 

on a stock-recruitment relationship. As both VPA and SAM did not internally estimate a stock-

recruitment relationship, we made a post-hoc analysis of the HS stock-recruitment relationship , 

using SSB and the number of recruits estimated in VPA and SAM: 

log(𝑅𝑦) = {
𝛼 × 𝑆𝑆𝐵𝑦, 𝑆𝑆𝐵𝑦 < 𝛽

𝛼 × 𝛽, 𝑆𝑆𝐵𝑦 ≥ 𝛽
 , (18) 

where α is the slope at the origin and β is the breaking point at SSB. We estimated these 

parameters by assuming log-normal error in the number of recruits. We used the averages of 

M at age, weight at age, maturity at age, and estimated F over years to derive SSB0 (SSB at F=0), 

R0 (recruitment at F=0), steepness (h), MSY, SSBmsy (SSB that allows for MSY), %SPRmsy 

(percentage of spawner per recruit at the MSY level relative to that at F=0), SSBmsy/SSB0, and 

F/Fmsy. The definition of steepness in the HS function depended on that by Punt et al. (2014): h = 

1 – β/SSB0. The MSY-based reference points were obtained by assuming that selectivity at age is 

the one that obtained by the average of F at age over years. Although we here estimated the 
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‘deterministic’ MSY-based reference points for simplicity, it is forewarned that the deterministic 

MSY-based reference points are necessarily more optimistic than ‘stochastic’ MSY-based reference 

points that are computed by a population dynamics simulation incorporating stochasticity including 

recruitment variability (Okamura et al. 2020). As the biological parameters related to growth and 

maturity in chub mackerel are much time-varying due to density dependence (Watanabe and Yatsu 

2004, 2006, Kamimura et al. 2021), the biological reference points would be time-varying (Miller 

and Brooks 2021). Therefore, we also calculated per-year reference points using each year’s data 

and estimates. 

 

Results 

Estimates of abundances and fishing mortalities  

In SAM, the past estimates of total biomass were almost the same among scenarios, whereas the 

past SSB and recruitment were, respectively, higher and lower in the scenarios A, C, and E (age 

common M) than in the scenarios B, D, and F (age-specific M) (Table 2; Fig. 1, left panels). The 

recent estimates were relatively different among scenarios: especially, SSB were estimated to be 

much higher in the scenarios C and D (highest weight and maturity) than the other scenarios (Fig. 

1, left and second top panel). This is because although the total fish numbers were the highest under 

the scenarios E and F (lowest weight and maturity), the much higher weight- and maturity-at-age 

under the scenarios C and D led to the highest SSB (Table 2). AIC values were 1002.9 for the 

scenario A, 1004.4 for B, 1017.2 for C, 1018.6 for D, 1000.2 for E, and 1002.9 for F.  

 In VPA, the past estimates of abundances and exploitation rates were not so different from 

those in SAM (Table 2). However, the abundance estimates (biomass, SSB and recruitment) in 

recent years were much higher in VPA than in SAM, while the exploitation rates in recent years 

were lower in VPA than in SAM (Fig. 1). Exceptionally, VPA under the scenarios E and F estimated 

a similar trend of SSB as SAM. The scenarios C and D (the highest weight and maturity) estimated 

higher total biomass and SSB than the other scenarios (Fig. 1, right panels). This is also because 

the effects of the highest weight- and maturity-at-age with the scenarios C and D increased biomass 

and SSB (Table 2). The ridge VPA, unlike SAM, cannot be compared by AIC because of using a 

penalized likelihood rather than a marginal likelihood. 

 In addition, the selectivity at age was moderately different between models especially for 

recent years: SAM estimated relatively higher selectivity for ages 1 and 2, but VPA estimated 

relatively higher selectivity for ages 4 and 5 in the latest two years (Fig. 2).  
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Fitting to the abundance indices 

The patterns of fitting to the abundance indices were different between SAM and VPA with all 

scenarios. VPA fitted better to the higher recruitment indices (fleets 2 and 3) in 2016 and 2018 than 

SAM (Figs. 3-8). By contrast, SAM fitted better to a SSB index (fleet 4) in recent years than VPA 

(Figs. 3-8). These differences possibly caused much higher abundances of VPA estimates than those 

of SAM estimates in recent years (Fig. 1). 

 The two recruitment indices (fleets 2 and 3) were significantly hyper-stable (bk < 1) under 

most scenarios in SAM and VPA, and had more nonlinear relationships with estimated abundances 

in SAM than in VPA (Table3, Figs. 9-14). By contrast, the SSB index of fleet 5 (egg survey index) 

was significantly hyper-depleted (bk > 1) under the scenarios A-F in VPA whereas it was assumed 

to be proportional in SAM (Table 3). The SSB index of fleet 4 (dip-net fishery index) showed 

significantly nonlinear relationships under the scenarios C, D, and F in VPA (Table 3, Figs. 9-14). 

It is noteworthy that the indices of the fleets 7 and 9 were extremely hyper-stable except for the 

scenario D in VPA, although their p values were not statistically significant for SAM because of 

large standard error due to small sample sizes (Table 3, Figs. 9-14). This indicates that these indices 

are not informative of abundances at least with this usage. 

 

Retrospective analysis  

In the retrospective analysis with SAM, there were no serious biases under all scenarios (Table 

4, Figs. 15-20), although a positive bias in the fishing mortality coefficient was found under the 

scenario C (Table 3, Fig.17). In the retrospective analysis of VPA, positive biases in biomass and 

SSB and negative biases in the fishing mortality coefficient were observed except for the scenario 

D (Table 4, Figs. 21-26).  

 

Basic biological parameters and biological reference points  

When using the averages of biological parameters and fishing mortality coefficients over years, the 

basic biological parameters (SSB0, R0) and MSY-based reference points (SSBmsy, MSY) that were 

associated with absolute values related to abundances were much larger in VPA than in SAM for 

the scenarios except for E and F (lowest weight and maturity) because higher estimates in 

recruitment and SSB led to higher parameter values of the breaking point (β) (Table 5, Fig. 27). The 

parameter α (slope of HS relationship at the origin), steepness, and the relative reference points 
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(%SPRmsy, SSBmsy/SSB0, F/Fmsy) were almost same between SAM and VPA, while the 

difference of M (age-common or age-specific) had a larger impact on these values (Table 5), 

suggesting that the setting of M will be important for evaluating the productivity of this stock and 

considering biological reference points. 

 The per-year analysis of %SPR and F relative to F0.1 revealed that the fishing impacts had 

been generally high until the 2000s, but decreased in the 2010s (Fig. 28, top and middle panels). F 

was generally higher than Fmsy until the 1990s but became lower than Fmsy thereafter in both 

SAM and VPA (Fig. 28, bottom panels). However, F relative to Fmsy has moderately increased 

since 2015 for all scenarios in SAM and the scenario E and F in VPA (Fig. 28, bottom panels). The 

recent increase in F/Fmsy is closely related to the declines of maturity at age and weight at age, 

which reduces SPR0 and %SPRmsy (Fig. 29).  

 The temporal trends of SSB/SSB0 were totally different between SAM and VPA and among 

the six scenarios as well (Fig. 30, top panels). SSB/SSBmsy in the past years (e.g., 1970s) were also 

much different between SAM and VPA, but interestingly its recent estimates were relatively similar: 

in both SAM and VPA, SSB are around SSBmsy under the scenario A, B, E and F or over SSBmsy 

under the scenarios C and D (Fig. 20, bottom panels). This implies that we should take care of not 

only recent estimates but also past estimates when we will use a depletion statistic such as 

SSB/SSB0 and SSB/SSBmsy as a performance measure for evaluating the stock assessment models. 

The past estimates SSB/SSBmsy in SAM were more robust among the scenarios than those in VPA.  

 

Discussion  

We showed that there is a large difference of abundance estimates for recent years between VPA 

and SAM (Fig. 1). The reason for this is that VPA allows a flexible change in annual selectivity at 

age, whilst SAM estimates a gradual change in selectivity at age under the assumption of random 

walk of F at age. This difference of model configuration caused lower selectivities for ages 1-3 in 

VPA than in SAM (Fig. 2), leading to the recent inflation of recruitment estimates in VPA compared 

to SAM.  In addition, SAM is less likely to estimate outliers of recruitment than in VPA because of 

random-walk recruitment. VPA tended to (over-)fit to the high values of recruitment indices (fleets 

2 and 3) in 2016 and 2018 (Figs. 3-8). By contrast, SAM fitted less to the recruitment indices, but 

fitted better to a SSB index (fleet 4). The difference of model configuration and the data conflict 

between the recruitment indices and the SSB index caused the large difference of abundance 

estimates between SAM and VPA in recent years.  
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 The abundance indices from the fleets 7 and 9 exhibited extreme hyperstability in both SAM 

and VPA (Table 3, Figs. 9-14). This is because those index values little change during the short time 

period when the data are available. The hyperstability can be a cause of overfishing because the 

abundance index is kept at a certain level even the actual abundance declines (Hutchings 1996, 

Rose and Kulka 1999), and therefore, we should discuss the way to resolve this problem towards 

the benchmark stock assessments.  Estimating the nonlinearity coefficients between abundance and 

their index like this document is a simple effective way to improve the accuracy of stock sizes under 

hyperstability or hyperdepletion (Hashimoto et al.2018). At the same time, there are strong needs 

to improve tuning method and to standardize those indices as well as to check meta data of those 

indices.  

 The two settings of M had little impact on absolute values of abundances and exploitation 

rates (Fig. 1), but relatively large influences on %SPR and F relative to F0.1 from the past to latest 

years (Fig. 28, top and middle panels): the scenarios with age-specific M had larger fishing impacts 

than the scenarios with age-common M. By contrast, F relative to Fmsy were greatly affected by 

the difference of maturity and weight in recent years rather than by the difference of M (Fig. 28, 

bottom panels). These biological parameters and data (M, maturity, and weight) will be important 

for assessing stock status relative to biological reference points. 

 Time-varying life-history parameters related to maturation and growth are one of the key 

characteristics for chub mackerel (Watanabe and Yatsu 2004, 2006, Kamimura et al. 2021). This 

indicates that basic biological parameters such as steepness and biological reference points such as 

SSBmsy change dynamically over years (Miller and Brooks 2021). We, hence, suggest that 

attention to the dynamic nature of chub mackerel should be paid not only in stock assessment but 

also future prediction and stock management. Even if we can correctly conduct stock assessment 

regarding past estimates, it is adequately possible that future prediction and management advice 

could be biased due to the misspecification of future biological parameters. Although %SPRmsy 

has sometimes been used as a proxy of Fmsy (Zhou et al. 2020), fixing %SPRmsy at a value as a 

proxy of Fmsy may not be effective for chub mackerel because %SPRmsy changed drastically in 

recent years (Fig. 29, bottom panels). This change of Fmsy caused the rapid increase F/Fmsy in 

recent years under some scenarios (Fig. 28, bottom panels) despite the fact that the exploitation rate 

was kept at a low level (Fig. 1, bottom panels). The time-varying biological parameters and their 

uncertainties into future prediction and stock management will be an important topic, which should 

be discussed towards the benchmark stock assessment work of chub mackerel in Northwestern 
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Pacific.  
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Tables 

Table 1: Six scenarios to be used for the stock assessment analyses for the operating model 

development. 

Scenario Description M 
Weight

-at-age 

Maturity

-at-age 

Catch 

(at-

age) 

Abundanc

e index 
Fleet 

A Base-case 1 0.41 Average Average 
Averag

e 
All six 

Singl

e 

B Base-case 2 
Gislaso

n 
Average Average 

Averag

e 
All six 

Singl

e 

C 

Highest 

weight and 

maturity 

0.41 Highest Highest 
Averag

e 
All six 

Singl

e 

D 

Highest 

weight and 

maturity 

Gislaso

n 
Highest Highest 

Averag

e 
All six 

Singl

e 

E 

Lowest 

weight and 

maturity 

0.41 Lowest Lowest 
Averag

e 
All six 

Singl

e 

F 

Lowest 

weight and 

maturity 

Gislaso

n 
Lowest Lowest 

Averag

e 
All six 

Singl

e 
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Table 2: Total numbers and SSB of summary statistics throughout the whole period (minimum, median, maximum, and mean), some years 

(1970, 1980, 1990, 2000, 2010, and 2019), and their ratios of the latest year (2019) to the summary statistics. 

Model 
Scen

ario 
Min Median Max Mean 1970 1980 1990 2000 2010 2019 

2019/M

in 

2019/M

edian 

2019/M

ax 

2019/M

ean 

Total number (billion)              

SAM 

A 0.68  (2000) 6.22  42.59  (2018) 12.10  24.42  11.66  0.82  0.68  4.96  35.14  51.63  5.65  0.83  2.90  

B 0.73  (2000)  6.77  44.28  (2018)  12.89  27.64  12.66  0.89  0.73  4.80  32.74  44.84  4.84  0.74  2.54  

C 0.68  (2000)  6.18  40.22  (2018)  11.97  24.40  11.66  0.82  0.68  4.87  33.83  49.93  5.47  0.84  2.83  

D 0.73  (2000)  6.86  42.99  (2018)  12.89  27.62  12.65  0.89  0.73  4.77  32.51  44.68  4.74  0.76  2.52  

E 0.68  (2000)  6.72  48.87  (2018)  13.21  24.23  11.61  0.81  0.68  5.43  41.33  60.75  6.15  0.85  3.13  

F 0.73  (2000)  7.68  52.47  (2018)  14.18  27.57  12.55  0.89  0.73  5.63  40.71  55.69  5.30  0.78  2.87  

VPA 

A 0.76  (2001) 7.07  151.38  (2018)  17.77  26.34  11.99  0.97  1.05  4.25  101.16  132.50  14.30  0.67  5.69  

B 0.86  (2001)  7.74  141.67  (2018)  17.90  29.80  12.68  1.02  1.16  4.05  80.03  93.08  10.34  0.56  4.47  

C 0.76  (2001)  7.17  168.25  (2018)  18.58  26.34  11.99  0.97  1.05  4.30  111.80  146.44  15.60  0.66  6.02  

D 0.86  (2001)  7.82  157.50  (2018)  18.63  29.80  12.68  1.02  1.16  4.08  88.20  102.58  11.28  0.56  4.73  

E 0.76  (2001)  7.74  405.97  (2018)  29.37  26.34  11.99  0.97  1.05  5.55  261.70  342.78  33.80  0.64  8.91  

F 0.86  (2001)  8.32  187.61  (2018)  19.89  29.80  12.68  1.02  1.16  4.28  103.63  120.52  12.46  0.55  5.21  

SSB (thousand ton)              

SAM 

A 43.9  (2002) 340.8  1300.9  (1979) 470.0  677.2  1024.3  86.5  62.1  166.7  852.1  19.39  2.50  0.66  1.81  

B 38.1  (2002)  293.6  1149.6  (1979) 410.7  605.6  884.0  68.9  53.1  136.6  754.8  19.78  2.57  0.66  1.84  

C 44.2  (2002)  341.7  1668.8  (2017) 528.4  680.4  1018.8  86.6  62.0  170.2  1309.1  29.64  3.83  0.78  2.48  

D 38.3  (2002)  285.6  1462.4  (2017) 461.9  608.1  880.4  69.0  53.1  133.4  1179.0  30.74  4.13  0.81  2.55  

E 43.8  (2002)  341.4  1300.6  (1979) 461.0  676.0  1024.5  86.5  62.2  187.5  842.5  19.23  2.47  0.65  1.83  

F 38.0  (2002)  299.9  1150.0  (1979) 394.6  604.2  884.9  68.8  53.1  142.4  706.6  18.59  2.36  0.61  1.79  

VPA A 44.5  (2002) 340.8  2431.3  (2019) 578.9  665.2  1093.3  99.4  64.9  120.1  2431.3  54.59  7.13  1.00  4.20  
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B 37.3  (2002)  283.9  1613.9  (2019) 464.9  583.7  943.9  74.5  53.5  102.0  1613.9  43.23  5.69  1.00  3.47  

C 44.5  (2002)  342.8  6761.1  (2019) 817.1  665.2  1093.3  99.4  64.9  120.2  6761.1  151.80  19.72  1.00  8.27  

D 37.3  (2002)  303.6  6754.8  (2019) 764.1  583.7  943.9  74.5  53.5  102.7  6754.8  180.93  22.25  1.00  8.84  

E 44.5  (2002)  340.3  1418.1  (1978) 480.8  665.2  1093.3  99.4  64.9  120.0  1048.2  23.53  3.08  0.74  2.18  

F 37.3  (2002)  277.0  1260.0  (1978) 396.7  583.7  943.9  74.5  53.5  101.9  666.0  17.84  2.40  0.53  1.68  

Note: The numbers of brackets show the years when the minimum or maximum values recorded. 
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Table 3: The index-related parameters of b (nonlinearlity coefficient) and ν (standard deviation) estimated by SAM and VPA under the 

scenarios A to F. 

Model Scenario 

b (nonlinearlity coefficient) ν (standard deviation) 

Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 7 Fleet 9 
Fleet 

2 

Fleet 

3 

Fleet 

4 

Fleet 

5 

Fleet 

7 

Fleet 

9 

SAM 

A 1.70* 2.01* 1.00 1.00 0.00 0.00 1.10 1.10 0.52 0.52 0.20 0.20 

B 1.73* 2.03* 1.00 1.00 0.00 0.00 1.08 1.08 0.53 0.53 0.20 0.20 

C 1.87* 2.20* 1.00 1.00 0.00 0.00 1.10 1.10 0.61 0.61 0.20 0.20 

D 1.88* 2.19* 1.00 1.00 0.00 0.00 1.08 1.08 0.64 0.64 0.20 0.20 

E 1.51* 1.82* 1.00 1.00 0.00 0.00 1.16 1.16 0.48 0.48 0.20 0.20 

F 1.57* 1.87* 1.00 1.00 0.00 0.00 1.13 1.13 0.51 0.51 0.20 0.20 

VPA 

A 1.34 1.52* 0.87 0.50* 0.49 0.27 1.01 1.01 0.56 0.56 0.18 0.18 

B 1.45* 1.62* 0.95 0.55* 0.32* 0.24 0.97 0.97 0.58 0.58 0.18 0.18 

C 1.31 1.48 0.64* 0.36* 0.33 0.40 1.00 1.00 0.60 0.60 0.18 0.18 

D 1.28 1.44 0.60* 0.34* -1.08* 3.10* 1.01 1.01 0.62 0.62 0.08 0.08 

E 1.33 1.49* 1.22 0.72 0.45 0.24 1.00 1.00 0.53 0.53 0.18 0.18 

F 1.44* 1.60* 1.38* 0.84 0.30* 0.22 0.97 0.97 0.56 0.56 0.18 0.18 

* The probability of b < 1 (hyperstability) or b > 1 (hyperdepletion) is p < 0.05. 
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Table 4: Mohn’s rho of the scenarios A to F with SAM and VPA. 

Model Scenario Biomass SSB Recruitment F 

SAM 

A -0.13 -0.09 -0.04 0.22 

B 0.02 0.08 0.12 -0.12 

C -0.16 -0.15 -0.02 0.34 

D -0.10 -0.07 0.02 0.01 

E -0.12 -0.07 0.01 0.13 

F -0.07 0.05 0.04 0.01 

VPA 

A 0.33 0.57 0.14 -0.23 

B 0.28 0.72 0.09 -0.24 

C 0.46 0.80 0.18 -0.24 

D 0.03 -0.03 0.01 0.26 

E 0.29 0.35 0.11 -0.21 

F 0.22 0.47 0.05 -0.21 
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Table 5: Basic biological parameters and biological reference points when using the averages of biological parameters and fishing mortality 

coefficients over years. 

Model 
Scen- 

ario 

α 
(106/ton) 

β 
(1000 ton) 

σR 
SPR0 

(g) 

SSB0  

(1000 ton) 

R0 

(billion) 

Steepne

ss (h) 

SSBmsy 

(1000 ton) 

MSY 

(1000 ton) 

%SPR

msy 

SSBmsy 

/SSB0 

F/ 

Fmsy 

SAM 

A 0.0074 974 0.75 665 4760 7.16 0.8 970 873 20 0.2 1.02 

B 0.0093 914 0.76 828 7060 8.52 0.87 910 917 13 0.13 1.03 

C 0.0072 894 0.75 693 4440 6.41 0.8 890 808 20 0.2 0.99 

D 0.0093 777 0.76 853 6140 7.2 0.87 780 800 13 0.13 0.99 

E 0.0078 968 0.78 649 4910 7.56 0.8 970 908 20 0.2 0.99 

F 0.0101 785 0.79 815 6490 7.96 0.88 780 845 12 0.12 0.99 

VPA 

A 0.0075 2177 0.88 665 10840 16.31 0.8 2180 1942 20 0.2 1 

B 0.0099 1056 0.9 828 8670 10.47 0.88 1060 1103 12 0.12 0.99 

C 0.0071 2990 0.88 693 14800 21.37 0.8 2990 2624 20 0.2 0.97 

D 0.0093 2664 0.91 853 21140 24.8 0.87 2660 2687 13 0.13 0.97 

E 0.0086 917 0.94 649 5130 7.9 0.82 920 935 18 0.18 0.93 

F 0.0114 715 0.96 815 6620 8.12 0.89 720 846 11 0.11 0.94 

 

,
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Figures  

 

Figure 1: the estimates of total biomass (1st column), SSB (2nd column), recruitment number (3rd 

column), and exploitation rate (4th column) with SAM (left) and VPA (right) under the scenarios 
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A to F. 

 

Figure 2: Selectivity at age in SAM (left) and VPA (right) under the scenario A to F. Selectivity is 

scaled so that its sum is equal to one. 
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Figure 3: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario A. 

 

 

Figure 4: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario B. 
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Figure 5: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario C. 

 

 

Figure 6: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario D. 

 



23 

 

 

Figure 7: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario E. 

 

 

Figure 8: Index values observed (points) and their predicted values by SAM (red lines) and VPA 

(blue lines) under the scenario F. 
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Figure 9: The relationships between abundance indices and their corresponding abundance 

estimates in SAM (red) and VPA (blue) under the scenario A. 

 

 

Figure 10: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario B. 
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Figure 11: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario C. 

 

 

Figure 12: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario D. 
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Figure 13: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario E. 

 

 

Figure 14: Relationships between abundance indices and their corresponding abundance estimates 

in SAM (red) and VPA (blue) under the scenario F. 
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Figure 15: Retrospective pattens SAM under the scenario A. 

 

 

Figure 16: Retrospective pattens of SAM under the scenario B. 
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Figure 17: Retrospective pattens of SAM under the scenario C. 

 

 

Figure 18: Retrospective pattens of SAM under the scenario D. 
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Figure 19: Retrospective pattens of SAM under the scenario E. 

 

 

Figure 20: Retrospective pattens of SAM under the scenario F. 
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Figure 21: Retrospective pattens of VPA under the scenario A. 

 

 

Figure 22: Retrospective pattens of VPA under the scenario B. 
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Figure 23: Retrospective pattens of VPA under the scenario C. 

 

 

Figure 24: Retrospective pattens of VPA under the scenario D. 
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Figure 25: Retrospective pattens of VPA under the scenario E. 

 

 

Figure 26: Retrospective pattens of VPA under the scenario F. 
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Figure 27: Continuous hockey-stick stock-recruit relationships in SAM and VPA with different 

scenarios.  
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Figure 28: Temporal trends of percent SPR (top), F relative to F0.1 (middle), and F relative to 

Fmsy (bottom) in SAM (left) and VPA (right) under the scenarios A to F when using per-year 

biological parameters and F-at-age estimates. The values of Fmsy here is based on the time-

varying estimates shown in Fig. 29.  
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Figure 29: Temporal trends of SPR0 (top) and %SPRmsy (bottom) in SAM (left) and VPA (right) 

under the scenarios A to F. 
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Figure 30: Temporal trends of SSB relative to SSB0 (top) and SSB relative to SSBmsy (bottom) 

in SAM (left) and VPA (right) under the scenario A to F. 
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Supplementary Figures  

 

Figure S1: Comparison of estimates in biomass, SSB, recruitment, and exploitation rate between 

SAM with the nonlinear coefficients (b) estimated except for the SSB indices and SAM with b fixed 

at 1 under the scenarios A and B. 

 

 

Figure S2: Comparison of estimates in biomass, SSB, recruitment, and exploitation rate between 
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VPA with the nonlinear coefficients (b) estimated except for the SSB indices and VPA with b fixed 

at 1 under the scenarios A and B. 

 

 

Figure S3: Residuals of abundance indices under the scenario A in SAM and VPA. The curves are 

the prediction by the LOESS (locally estimated scatterplot smoothing) regression. 
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Figure S4: Residuals of abundance indices under the scenario B in SAM and VPA. 

 

 

Figure S5: Residuals of abundance indices under the scenario C in SAM and VPA. 

 

 

Figure S6: Residuals of abundance indices under the scenario D in SAM and VPA. 
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Figure S7: Residuals of abundance indices under the scenario E in SAM and VPA. 

 

 

Figure S8: Residuals of abundance indices under the scenario F in SAM and VPA.  
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Figure S9: Residuals of catch-at-age under the scenario A in SAM. The blue curves are the 

prediction by the LOESS regression with 95% confidence intervals. 

 

 

Figure S10: Residuals of catch-at-age under the scenario B in SAM. 
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Figure S11: Residuals of catch-at-age under the scenario C in SAM. 

 

 

Figure S12: Residuals of catch-at-age under the scenario D in SAM. 
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Figure S13: Residuals of catch-at-age under the scenario E in SAM.  

 

 

Figure S14: Residuals of catch-at-age under the scenario F in SAM.  


