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A B S T R A C T

Fishery-dependent catch-per-unit-effort (CPUE) data often exhibit spatial heterogeneity over space and time, 
which means that the spatial treatment in statistical models used to standardize CPUE is critically important. We 
evaluated several spatial treatments to standardize CPUE data using Generalized Linear Mixed Models (GLMMs). 
Results include a real-world application and a simulation based on the Taiwanese stick-held dip net fishery for 
Pacific saury in the Northwestern Pacific Ocean. We compared the performance of three spatially stratified 
approaches in GLMMs, (i) Ad hoc; (ii) Binary (binary recursive area partitioning based on model selection 
criteria); and (iii) Spatial clustering (partitioning of grids into discrete strata based on the spatial proximity and 
average CPUE in each grid), to a spatio-temporal GLMM (VAST). An influence analysis was constructed to 
quantify discrepancies between unstandardized and standardized indices that assisted in identifying the annual 
influence of explanatory variables in GLMMs. We developed a simulation to corroborate the results from the case 
study and evaluated the four spatial treatments using data generated from two contrasted, random and prefer-
ential, sampling scenarios. Results from the real-world application indicated that VAST was statistically superior 
to the other approaches, based on conditional deviance explained, conditional Akaike Information Criterion, and 
five-fold cross-validations. The influence analysis indicated that the interaction of year and spatial effect or 
spatio-temporal variable had a major influence on the standardized CPUE. Both simulation scenarios showed that 
VAST performed the best, with the lowest model error (measured by root mean square error) and bias, for 
estimating relative abundance indices. Although the spatial clustering approach created a flexible shape for the 
area strata, the simulation results under preferential samplings showed that clustering with a stronger emphasis 
placed on average CPUE could lead to bias in estimated abundance indices. However, spatial clustering that 
balanced average CPUE with spatial proximity could be a reasonable alternative if it is not possible to apply a 
spatio-temporal approach. The importance of conducting influence analysis and the greater performance of a 
spatio-temporal approach are highlighted.   

1. Introduction

Commercial catch-per-unit-effort (CPUE) data are often standardized
for use as an index of relative abundance, particularly in fisheries where 
a regular survey has not been feasible (Hilborn and Walters, 1992; 
Maunder and Punt, 2004). To be useful as an index of relative abun-
dance, raw CPUE data requires standardization to adjust for the effects 
of spatial and temporal dynamics in gear configuration, fishing power, 
and fishing behaviour (Campbell, 2004; Maunder and Punt, 2004; 

Maunder et al., 2006). The non-random nature of spatial distributions of 
fish density can also cause CPUE data from preferred fishing grounds to 
exert a disproportionate effect on the estimated fish abundance (i.e., 
preferential sampling; Rose et al., 1991; Conn et al., 2017; Ducharme--
Barth et al., 2022). Therefore, adjusting for the spatial heterogeneity of 
CPUE data is essential for CPUE standardization. The confounding effect 
of spatial heterogeneity has commonly been addressed by the inclusion 
of categorical grids (e.g., 5◦ × 5◦ grids) or area strata within Generalized 
Linear Models (GLMs), Generalized Additive Models (GAMs), and 
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Generalized Linear Mixed Models (GLMMs) used for CPUE standardi-
zations (Maunder and Punt, 2004). In theory, the area strata are 
assumed to represent spatial heterogeneity in fish density, which may be 
treated as categorical variables in the standardization model to adjust 
for differences in CPUE associated with each stratum. Ideally, an 
appropriate area stratum is a region where fish density is homogeneous 
(Bishop, 2006), but in reality this is seldom the case. Many studies take 
ad hoc sets of grids as the area strata in standardizing CPUE analysis, or 
use area strata defined using either the spatial distribution of nominal 
CPUE and fishing effort or oceanographic conditions (e.g., Quinn et al., 
1982; Nakano, 1998). However, it is difficult to construct appropriate 
area strata objectively using an ad hoc approach, and spatial mis-
specification in the CPUE standardization process could potentially 
result in a biased index of relative abundance (Bishop, 2006). 

Several spatially stratified approaches have been developed to define 
objective criteria for the area stratifications in standardizing fishery 
CPUE. For example, a binary recursive partitioning approach was 
developed to automatically stratify the study area based on information 
criteria (e.g., Akaike or Bayesian Information Criteria, AIC or BIC) 
(Ichinokawa and Brodziak, 2010). This approach created area stratifi-
cations more effectively than the area strata determined in an ad hoc 
manner and achieved better GLM fits to the CPUE data of North Pacific 
swordfish (Xiphias gladius). However, the binary recursive partitioning 
approach is limited to generate rectangular area strata due to its binary 
partitioning nature. In the real world, the distribution of fish density is 
unlikely to be structured as rectangular shapes. Ono et al. (2015) pro-
posed an alternative area stratification approach known as spatial 
clustering to improve upon the rectangular area strata shape seen in 
Ichinokawa and Brodziak (2010). The spatial clustering approach ap-
plies a k-medoids algorithm to cluster grids of CPUE data according to 
the similarity of the spatial proximity and average CPUE of grids. This 
approach creates a flexible shape rather than a rectangular shape for the 
area strata which may better match the population structure inferred 
from the CPUE data. Ono et al. (2015) also suggested, based on simu-
lation experiments, that the spatial clustering approach could reduce 
bias in abundance indices compared to the ad hoc approach, but this 
would not be expected to occur if the spatial distribution of fishing 
grounds had shifted over time. 

The spatial effect in conventional GLMs for CPUE standardization 
assumes that the adjacent strata/grids are independent of each other. 
However, the variation of fish abundance and availability is often 
continuous and correlated with biotic and abiotic environmental factors 
over space (i.e., spatially structured). Therefore, it seems appropriate to 
incorporate spatial autocorrelation into a standardization model as a 
continuous covariate to more reasonably reflect the spatial heteroge-
neity of fish distributions (Thorson et al., 2015; Thorson and Barnett, 
2017). Recent years have seen the emergence of spatio-temporal models 
(e.g., Vector Autoregressive Spatio-Temporal, VAST; Thorson, 2019) for 
standardizing CPUE data (e.g., Xu et al., 2019; Maunder et al., 2020; 
Ducharme-Barth et al., 2022), because this approach could provide a 
more sophisticated treatment of spatial variation by accounting for not 
only the long-term spatial autocorrelation (i.e., spatial autocorrelation 
that is constant over time) but also the spatio-temporal autocorrelation 
(i.e., spatial autocorrelation that is specific to each year of the study 
period) in the CPUE standardization. Specifically, a spatio-temporal 
approach allows for the spatial and spatio-temporal effects to be 
treated as continuous Gaussian Markov random fields (GMRFs), which 
may yield more precise, biologically reasonable, and interpretable es-
timates of abundance than common area strata factors in GLMs (Shelton 
et al., 2014; Thorson et al., 2015). 

Multiple comparative studies (Grüss et al., 2019; Zhou et al., 2019) 
have shown the benefits of using spatio-temporal models for standard-
izing CPUE data relative to other regression models. Grüss et al. (2019) 
used a simulation experiment to show that VAST minimized residual 
variance over space without defining the area strata in advance and 
usually had the lowest error and bias relative to the eight other linear 

models considered. Zhou et al. (2019) showed similar results when 
comparing a spatio-temporal approach to GLMs and GAMs. However, 
the Grüss et al. (2019) and Zhou et al. (2019) studies only considered a 
fixed ad hoc area stratification (10 areas and 7 areas, respectively) a 
priori to CPUE standardization. Consequently, it was not possible to 
evaluate whether their area stratification approaches were appropriate 
and sufficient to standardize CPUE. To our knowledge, there has not 
been a study which explicitly compares the performance of different 
spatial treatments (Ad hoc, Binary, Spatial clustering, and 
spatio-temporal approaches) where a consistent model structure with 
the same sets of covariates has been applied. 

Most CPUE standardization studies have concentrated on removing 
the effects of predictors to obtain an unbiased index of abundance. Few 
studies have focused on understanding the differences between stan-
dardized and unstandardized CPUE indices (Holdsworth and Saul, 2017; 
Hoyle et al., 2019; Feenstra et al., 2019). Bentley et al. (2012) suggested 
that it is necessary to conduct an explanatory analysis (e.g., R package 
influ; https://github.com/trophia/influ) for exploring how the CPUE 
standardization model removes confounding effects by including each 
explanatory variable in models rather than simply accepting the relative 
abundance index arising from a model. Furthermore, although consid-
ering the interaction effect of year and area in GLMs is a common way to 
standardize spatiotemporal patterns in CPUE data, the influence analysis 
of the interaction effect has rarely been examined. 

Given the identified gaps in the literature, our analytical objective 
was to evaluate the effects of spatial treatments on CPUE standardiza-
tion, using a consistent model structure and with the same sets of 
covariates within a GLMM framework. This objective was achieved by 
using the CPUE data of a commercially important migratory species, 
Pacific saury (Cololabis saira), as an example. The Pacific saury fishery in 
the Northwestern Pacific Ocean exploited by the Taiwanese stick-held 
dip net vessels provides an example of spatial heterogeneity of CPUE 
data, with more than 98,000 fishery operations recorded during 1997 – 
2019 over a large geographical range (Chang et al., 2019). We applied a 
GLMM framework, with a year effect, spatial, and spatio-temporal 
variation terms, a vessel effect, and the effect of oceanographic condi-
tions (i.e., sea surface temperature). We then compared the statistical 
performances (e.g., conditional deviance explained, conditional AIC, 
and five-fold cross-validations) of the four alternative sets of spatial 
treatments (three area stratification approaches and the spatio-temporal 
approach). We also used influence plots (Bentley et al., 2012) to clarify 
how a GLMM can remove confounding effects of explanatory variables. 
Finally, we conducted a simulation study using two contrasted spatial 
sampling scenarios to evaluate whether various spatial treatments could 
result in model misspecification in CPUE standardization. Our study was 
developed and illustrated in the context of Pacific saury. However, it 
should be broadly applicable to other fisheries for which similar data are 
available and could provide useful guidance for the appropriate treat-
ment of the spatial effect in CPUE standardization analyses. 

2. Materials and methods

2.1. Pacific saury fishery dataset and data filtering 

Pacific saury fishery logbook data from the Taiwanese stick-held dip 
net vessels operating in the Northwestern Pacific Ocean (mainly 35◦N – 
49◦N and 140◦E – 173◦E) during the main fishing season (August to 
November) from 1997 to 2019 were used in this study. Daily logbook 
data included the catch (in metric tons), the vessel identification (vessel 
ID), the amount of effort (number of hauls), and the location of sets by 
latitude-longitude at a resolution of 0.25◦. These logbook records were 
obtained from the Overseas Fisheries Development Council of Taiwan. 
This dataset does not include any zero catches because Pacific saury are 
targeted by vessels fishing at night using lamps to attract schools of fish. 
Data filtering was applied before the standardization to remove 
incomplete and insufficient data, such as sets with no information about 
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the date, vessel ID, and locations. The final dataset included 98,738 
fishing operations, after removing 2% of the sets from the original 
dataset. 

2.2. Spatially stratified GLMMs 

The application of GLMMs has been one of the most frequently 
employed modelling approaches for CPUE standardization (Maunder 
and Punt, 2004). GLMMs (Pinheiro and Bates, 2000) extend the GLM 
method by allowing some of the explanatory variables in the linear 
predictor to be treated as random variables. GLMMs have proven 
particularly useful for dealing with the year × spatial interaction in the 
CPUE standardization process (Miyabe and Takeuchi, 2003; Forrestal 
et al., 2019; Grüss et al., 2019), and were therefore considered as the 
most suitable framework for this study. Various studies have indicated 
that the spatial and temporal distribution of Pacific saury could be 
affected by changes in sea surface temperatures (SST; Chang et al., 2019; 
Hsu et al., 2021). Specifically, a fishery-independent survey for Pacific 
saury showed that it prefers a habitat with SST between 7 and 15 ◦C 
(Hashimoto et al., 2020). Therefore, we used SST at fishing and its 
squared value (SST2) as continuous variables in the GLMM standardi-
zation models, which allowed for the assumption that observed CPUE 
had a peak at an intermediate level of SST (Thorson and Barnett, 2017; 
Hashimoto et al., 2019). Given that fishermen could attract fish schools 
with fishing lamps at nighttime, the use of light (e.g., number or power 
of lights) could vary among fishing vessels and affect the catchability, 
hence it should be included in the CPUE standardization. However, such 
information is not available in our logbook data for the stick-held dip net 
fishery. Vessel ID was considered as a proxy for fishing power and was 
used as a covariate in the CPUE standardization procedure (Punt et al., 
2000; Glazer and Butterworth, 2002; Battaile and Quinn, 2004). 

Two metrics of fishing effort data (i.e., haul numbers vs. fishing days) 
could be extracted to define the CPUE from the Pacific saury logbook 
dataset, although they were not consistently reported throughout the 
study duration. Haul data were first recorded in 2003 and were missing 
from 48% of the logbook records from 2003 to 2006. Using effort data 
defined as the number of fishing days allowed for a longer period of 
analysis (1997 – 2019), but this definition could potentially be hyper-
stable (Hilborn and Walters, 1992) if an increase in daily hauls was used 
to maintain a daily catch-rate when abundance was low. As a sensitivity, 
we developed standardized indices using both effort definitions 
(Fig. S1). Because the trends were similar, CPUE with the fishing day 
effort definition (metric tons/day) was used throughout the analysis. 

Positive CPUE data were assumed to follow either a lognormal or 
gamma distribution (Ortiz and Arocha, 2004); the lognormal distribu-
tion was assumed in the current study for positive CPUE data following 
Ichinokawa and Brodziak (2010) and Winker et al. (2013). An explor-
atory analysis did not indicate that the current analysis was sensitive to 
the choice of error distribution as the standardized CPUE indices and the 
deviance explained (e.g., conditional R2) were similar for the two error 
distributions within the GLMM considered. The residual frequency dis-
tributions of the two error assumptions derived from the four GLMMs 
indicated no violation of the assumed statistical distributions. Accord-
ingly, we normalized the CPUE response by the natural logarithm 
transformation, log(CPUE), which is a common procedure in CPUE 
standardization (Winker et al., 2013; Grüss et al., 2019). To focus on 
comparing the influences of various spatial treatments on the CPUE 
standardization, we only included five explanatory variables in the 
GLMMs, and we did not conduct any model selection procedure. How-
ever, the statistical significance of each variable was examined. 
Explanatory variables considered in the GLMMs included Year, Area 
(see Section 2.3), Vessel, quadratic water temperature effects (SST and 
SST2), and the interaction of year and spatial effects (Year×Area; to take 
into account vessel targeting behavior or fish distribution shift). SST and 
SST2 were treated as continuous variables while the remaining cova-
riates were treated as factors. We fit GLMMs to standardize CPUE for 

Pacific saury as described in the following equation (Ono et al., 2015; 
Thorson et al., 2015): 

log(pi) = βYear(i) + βArea(i) + βYear(i)×Area(i) + βVessel(i) + βSST(i) × SST(i) + βSST2(i)

× SST2
(i)

(1)  

where pi is the predictor for observations i (metric tons/day), and β is the 
estimated coefficient of its subscript (e.g., Year, Area, etc.). We treated 
the year effect, area effect, and quadratic water temperature effects as 
fixed effects. The vessel and the year × spatial interaction were treated 
as random effects. Model fitting was carried out with the “lmer” func-
tions provided in the R statistical platform (Bates et al., 2015; R Core 
Team, 2021). 

2.3. Spatial treatments in the spatially stratified GLMMs 

Three area stratification approaches were used in the GLMMs (i.e., 
spatially stratified GLMMs) for standardizing Pacific saury CPUE data. 
These alternative area stratifications are described below:  

(i) Ad hoc approach  
The definition of the four area strata was modified based on Huang 

et al., (2007, 2020) which grouped the 1◦ × 1◦ grids of Pacific saury 
CPUE data based on the bathymetric (depth) contours derived from the 
Centenary Edition of the GEBCO (General Bathymetric Chart of the 
Oceans) Digital Atlas (IOC-IHO-BODC, 2003). This approach is currently 
used for the CPUE standardization of Pacific saury by the North Pacific 
Fisheries Commission (Huang et al., 2021; Hashimoto et al., 2021).  

(ii) Binary recursive partitioning approach  
The binary recursive partitioning approach (i.e., Binary approach) 

developed by Ichinokawa and Brodziak (2010) is an algorithm that 
sequentially and recursively divides the whole studied area into several 
strata. This binary approach was applied to partition Pacific saury CPUE 
data using the following three steps. First, the algorithm divided the 
whole study domain into all possible pairs of strata, assuming a fixed 
spatial resolution (0.25◦) defined by a set of regularly spaced dividing 
lines. Second, a GLMM (see Section 2.2) was applied to fit the CPUE data 
under each of the possible stratifications. Third, the information crite-
rion (i.e., AIC; Burnham and Anderson, 2002) was used to determine the 
stratification that produced the best fit over the set of possible stratifi-
cations. This three-step procedure was repeated recursively until the AIC 
value could not be improved by an increase in the number of areas. The 
maximum area strata number was fixed to six to have a comparable set 
of strata among various area stratification approaches.  

(iii) Spatial clustering approach  
The spatial clustering approach applied a k-medoids algorithm to 

partition the 0.25◦ × 0.25◦ grids of Pacific saury CPUE into discrete area 
strata based on the spatial proximity and average CPUE in each grid 
(Ono et al., 2015). In this approach, the first step entailed calculating the 
Euclidean distance and the difference in mean values of CPUE obser-
vations between any two grids. Next, a k-medoids cluster analysis 
(Kaufman and Rousseeuw, 1990) was run where medoids are objects 
within a cluster for which the average dissimilarity to the remaining 
objects in the cluster is minimal. Furthermore, the dissimilarity matrix 
was multiplied by a weighting factor w to emphasize (or de-emphasize) 
the magnitude of spatial proximity with respect to the difference in 
underlying fish population density (Ono et al., 2015). This process 
makes the shape of the resulting stratified area irregular to match the 
population structure as inferred from the CPUE data. Following the 
approach of Ono et al. (2015), we set two weighting factors, w = 1 and w 
= 0.1, to illustrate two shapes for the stratified area, namely “Spatial 1” 
and “Spatial 0.1”. The “Spatial 1” approach assigns equal weight to 
spatial proximity and average fish density. The “Spatial 0.1” approach 
sets less weight to spatial proximity, representing the difference of one 
standardized unit in either spatial coordinate with 100 times less in-
fluence than one unit change in population density. We applied the pam 
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() function in the cluster package (Maechler et al., 2014) provided in the 
R programming environment for the k-mediod cluster analysis. A visual 
inspection was used to identify the inflection point in the change in AIC 
values as the number of clusters increased. The number of clusters 
(choice between 2 and 6 strata) corresponding to the inflection point 
was selected as the optimal number of area strata. 

2.4. Spatio-temporal GLMM 

The spatio-temporal modelling approach used herein was adapted 
from the R package VAST (version 3.2.2) (https://github.com/James- 
Thorson-NOAA/VAST) developed by Thorson et al. (2015). By default, 
VAST implements a delta-generalized linear mixed modelling frame-
work, where the probability distribution for the catch is decomposed 
into two components representing the probability of encounter and the 
expected catch rate, given that catch occurs (Thorson, 2019). We only 
included the positive catch rate (i.e., observed CPUE) component 
because the Pacific saury dataset did not contain zero CPUE data. This 
model structure is possible in VAST by specifying the user-controlled 
vector for observation models as ObsModel = 1 (the distribution for 
positive catch rates is lognormal) and 3 (the encounter probability 
equals 1 for any year) in VAST and by turning off all model structure 
associated with the probability of encounter component (e.g., Field-
Config = c(“Omega1”= 0, “Epsilon1”= 0, “Omega2”= 1, “Epsilon2”= 1) 
and OverdispersionConfig = c(“Eta1”= 0, “Eta2”= 1)). The positive 
catch rate was approximated using a lognormal GLMM with a log-link 
function and linear predictors, which included GMRFs to model the 
spatial and spatio-temporal effects. The assumption of using a 
log-transformed positive catch rate in VAST has been commonly used (e. 
g., Xu et al., 2019; Grüss et al., 2019; Sculley and Brodziak, 2020). Other 
positive continuous distributions such as the Gamma distribution could 
also be considered. 

VAST requires the previous definition of spatial knots s, which are 
the points where the correlations for spatial and spatio-temporal effects 
are estimated. We specified 100 spatial knots to approximate the spatial 
and spatio-temporal auto-correlated variations. This is a default 
configuration in VAST, which entails spatial allocation of the knots with 
a density proportional to the sampling intensity by applying a k-means 
algorithm (e.g., Xu et al., 2019; Grüss et al., 2019; Sculley and Brodziak, 
2020). However, it has previously been suggested that a uniform allo-
cation of knots across a pre-defined spatial domain was preferable to a 
proportional allocation based on fishing intensity using a k-means 
analysis (Ducharme-Barth et al., 2022). As a sensitivity, we developed 
two standardized indices using both knot configurations (Fig. S2). A 
similar trend could be observed between both knot configurations, but 
the coefficients of variation (CVs) of the standardized indices calculated 
from the uniform knot distribution were greater than those from the 
proportional knot distribution model (Fig. S3). Given the similarity of 
standardized indices, we used the proportional knot distribution for the 
comparison to other spatial treatments in this study. We also confirmed 
using an exploratory analysis that our results are qualitatively similar 
when using different numbers of spatial knots (100, 150, and 200 knots). 
The logarithm prediction of the Pacific saury CPUE is described below: 

log(pi) = β(ti) + ω(si) + ε(si, ti) + δ(vi) +
∑n

j=1
γ(j)X(si, ti, j) (2)  

where p(i) is the predictor for observation i (metric tons/day), β(ti) is the 
intercept for year ti as a fixed effect and independent among years, ω(si) 
is the time-invariant spatial variation at location si (i.e., each of the 100 
knots), and ε(si,ti) is the time-varying spatio-temporal variation for 
location si in year ti, and δ(vi) is the vessel effect as a mean-zero random 
effect with a standard deviation of one (Thorson, 2019). In addition, γ(j) 
is the jth catchability covariate X(si, ti, j) on location si in year ti (i.e., the 
impact of SST on daily observed Pacific saury CPUE; Hashimoto et al., 
2021), n is the number of catchability covariates. The marginal 

likelihood of fixed effect parameters is calculated with Template Model 
Builder using the Laplace approximation to integrate across random 
effect parameters (Kristensen et al., 2016), and fixed effect parameters 
are then estimated by maximizing the marginal likelihood within the R 
computing environment (R Core Team, 2021). Convergence was 
checked by ensuring that the absolute value of the final gradient of the 
log-likelihood function at the maximum likelihood estimate was less 
than 0.001 for all parameters and that the Hessian matrix of the likeli-
hood function was positive definite. 

2.5. Statistical performance 

The conditional R2 (Nakagawa and Schielzeth, 2013) and the con-
ditional AIC (Greven and Kneib, 2010) were calculated to represent the 
performance of the five GLMMs using various spatial treatments (sub-
sequently called the Ad hoc, Binary, Spatial 1, Spatial 0.1 GLMMs, and 
VAST) for Pacific saury. We also conducted repeated five-fold cross--
validations to compare the performance of each GLMM (Winker et al., 
2013; Shono, 2014). A stratified random sampling approach using years 
as strata was used in the five-fold cross-validation procedure to maintain 
the basic structure of the dataset because the year effect was the variable 
of interest. Each dataset was randomly resampled without replacement 
under each of the year strata. The first 80% of the randomly drawn data 
were used as “training data” to fit the model, and the estimated model 
coefficients were then applied to predict the CPUE from the covariate 
information in the remaining 20% of the “testing data”. We utilized the 
averaged values of the explained deviances (conditional R2) and the 
Pearson’s correlation coefficients (derived from the observed and the 
predicted CPUE) estimated from the testing data to compare statistical 
performances of the five GLMMs. The five-fold cross-validations were 
repeated 10 times and were used with the averaged values of the con-
ditional R2 and the Pearson’s correlation coefficients derived from the 
10 replicates to evaluate the performances of the five GLMMs. 

2.6. Standardized abundance indices 

Standardized abundance indices derived from spatially stratified 
GLMMs (Ad hoc, Binary, Spatial 1, and Spatial 0.1) were calculated in 
two steps. First, CPUE was predicted with fitted GLMMs for all combi-
nations of years and areas. We then used the mean of the assumed 
normal distribution of the year × spatial random effect (i.e., zero) to 
impute the missing year × spatial values to derive the standardized 
CPUE for each year and area (Campbell, 2015): 

CPÛEArea,Year = exp(βYear + βArea + βYear×Area) (3) 

A bias-corrected estimate for the standardized CPUE in each year and 
area was calculated as exp

(
CPÛEArea,Year + σ̂2

/2
)
, where σ̂ is the esti-

mated model standard deviation (residual standard error) (Maunder and 
Punt, 2004). In the second step, we calculated the standardized abun-
dance indices, with and without area weighting, and compared their 
difference(s) for each spatially stratified GLMM. The index without the 
area weighting was computed by using an equal weight for each area (i. 
e., arithmetic mean). The area-weighted index (CP̂UEYear) was obtained 
by summing over all stratified areas within a year (CP̂UEArea,Year) 
following Campbell (2015): 

CPÛEYear =
∑n

Area=1
SAArea × CP̂UEArea,Year (4)  

where n is the number of area strata (which differ among various area 
stratification approaches); SAArea is the proportion of the surface area for 
a given Area to the whole studied domain. 

Unlike the spatially stratified approaches, the explicit spatial corre-
lation modelled in VAST was used to predict the Pacific saury density 
across all spatial cells in the study area. The standardized abundance 
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index in year t across the studied area was described as follows: 

CPÛE(t) =
∑n

s=1
SA(s) × exp(β(t) + ω(s) + ε(s, t) ) (5)  

where n is the number of knots s; β(t) is the year effect in t year; ω(s) is 
the spatial effect at s knot; ε(s,t) is the spatio-temporal effect at s knot in t 
year, and SA(s) is the surface area of the triangulated mesh associated 
with knot s. Annual relative abundance indices without area weighting 
were also calculated for VAST. The bias-correction estimator within 
VAST (Thorson and Kristensen, 2016) was employed to account for 
retransformation bias when predicting the abundance. 

Uncertainties about the annual relative abundance indices deriving 
from the four spatially stratified GLMMs were estimated based on the 
method used by Campbell (2015); see section 6 for details). For VAST, 
the uncertainty of the predicted index was computed using a general-
ization of the delta method (Thorson et al., 2015; Thorson and Barnett, 
2017). Each of the standardized abundance indices was normalized to its 
mean for the studied period (1997 – 2019), respectively, in order to 
facilitate comparison (Winker et al., 2013; Kai et al., 2017). 

2.7. Quantifying the influence of explanatory variables 

In order to quantify the influence that each explanatory variable had 
for explaining the difference between standardized and unstandardized 
(arithmetic mean of observed CPUE observations) CPUE in each year (i. 
e., year effect), we used the influence analysis described by Bentley et al. 
(2012). The annual influence of an explanatory variable can be quan-
tified as the combination of the model coefficients and CPUE data 
distributional changes over the years based on the Coefficient 
Distribution-Influence plot (CDI) (Bentley et al., 2012). 

To calculate such a measure of influence, the normalized coefficient 
associated with an explanatory variable (ρ) was calculated as: 

ρ =
∑n

i=1
αi/n (6)  

where αi is the estimated coefficient of a variable (factor) corresponding 
to observation i, and n is the number of CPUE observations. Then, the 
annual influence value for a variable in year y (AIy) was the exponen-
tiation of the mean difference between the coefficients corresponding to 
all observations in that year and the normalized coefficient for a mul-
tiplicative GLMM (since the log-link function was used, i.e., AIy = exp 
(δy)): 

δy =

∑n

i=1
αi − ρ

n
(7)  

where n is the number of observations in year y. If the AIy value for a 
variable is larger than one, it implies that adding this variable to the 
model will make the standardized CPUE less than the unstandardized 
CPUE in year y. Conversely, an AIy value less than one indicates that 
adding the variable will make the standardized CPUE higher than the 
unstandardized CPUE in year y. If AIy equals one, the variable has no 
impact on the difference between unstandardized and standardized 
CPUE in year y. 

The overall influence metric of a variable across all years (AI) was 
calculated as: 

AI = exp

⎛

⎜
⎜
⎝

∑m

y=1
δy

m

⎞

⎟
⎟
⎠ − 1 (8)  

where m is the number of years. 
The CDI plot first presented by Bentley et al. (2012) combines the 

information of the normalized coefficient values, the distributional 

changes of the data record, and the resulting AI values into a single plot 
(see Fig. 4 as an example). Specifically, the top panel of the CDI plot 
provides normalized coefficients for a variable and their standard errors, 
bubbles in the bottom left panel indicate the annual distribution of data 
records from each level of the variable and the AI values for a variable 
over years were shown in the bottom right panel. When extending the 
CDI plot to VAST, we first grouped the 100 spatial knots into 20 
“grouped” knots according to their coefficients from low to high in order 
to simplify the visualization of the data distribution and coefficients for 
the spatial random effect. A CDI plot was then created for the grouped 
knots. Since knots with similar coefficients correspond to spatial areas 
with similar levels of predicted abundance, this allowed us to identify 
changes in the index corresponding to shifts in sampling between areas 
of high or low estimated abundance. Additionally, through an explor-
atory analysis we noted that spatial knots in the same group were 
generally grouped together spatially. 

Although the year × spatial interaction was treated as a random ef-
fect (i.e., normally distributed with a mean value of zero), the influence 
of the interaction could still be examined because the coefficients may 
have a pattern varied from their overall average. For a better under-
standing of the information contained in the coefficients of year 
× spatial interaction across years, we modified the CDI plot of Bentley 
et al. (2012) by examining the normalized coefficients of the year 
× spatial interaction (see Fig. 6 as an example, solid circles with color in 
the top panel) by area. Then, the AIy value for the year × spatial inter-
action in year y (shown in the bottom right panel) could be calculated 
similarly as previously described for a factor variable. The CDI plot for 
the spatio-temporal effect in VAST also utilized 20 grouped knots. 

In this study, influence analysis was only used to explain the differ-
ence between the standardized index without area weighting and the 
unstandardized index. The reason being that the area-weighting process 
was independent of the estimated coefficients and distributional 
changes of CPUE observations over the years. 

2.8. Evaluation using simulated data 

Simulation testing is a powerful tool to evaluate the performance of 
CPUE standardization methods (Ono et al., 2015; Grüss et al., 2019; 
Ducharme-Barth et al., 2022). The advantage of this approach is that the 
simulated abundance trends are known so that the standardization 
method can be tested in terms of how well it predicts “true” abundance 
trends. Abundance indices derived from fishery-dependent CPUE data 
are known to have the potential for bias, due to the usual non-random 
nature of fisheries spatial distributions (“preferential sampling”; Clark 
and Mangel, 1979; Rose and Leggett, 1991; Rose and Kulka, 1999; Swain 
and Sinclair, 1994). Therefore, we developed a simulation framework 
with two spatial sampling scenarios (i.e., random and preferential 
spatial sampling patterns) to evaluate which spatial treatments could 
effectively address the spatial heterogeneity in the underlying data (i.e., 
leading to unbiased results compared to the true value). We then 
simulated Pacific saury data similar to that available in the North-
western Pacific Ocean and then fit both the spatially stratified GLMMs (i. 
e., Ad hoc, Binary, and Spatial clustering approaches) and VAST to the 
simulated CPUE data under two sampling scenarios: (i) a random; and 
(ii) a preferential spatial sampling pattern. We then extracted the esti-
mate of total abundance and compared this with the true value. 

2.8.1. Sampling patterns 
The spatial domain of the simulation covered the spatial extent of the 

fishing ground for Pacific saury from 140◦ E – 170◦ E longitude and from 
35◦ N – 50◦ N latitude (Hsu et al., 2021). Following the approach by 
Thorson et al. (2015), true biomass was simulated by fitting a VAST 
model without effects of vessel and sea surface temperature to generate 
a base biomass distribution of Pacific saury B(s,t) (metric tons/day) from 
1997 to 2019, where s denotes a cell of 0.25◦ spatial resolution (7,023 
cells in the spatial domain) and t denotes the yearly time step (illustrated 
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in Fig. S4a). The biomass summed across all 0.25◦ spatial cells over the 
whole spatial domain for the year t was referred to as the “true” index 
(Tt). For each of the different spatial sampling patterns (i.e., random and 
preferential sampling; Fig. S4b - c), observation error η was incorporated 
to produce the “observed” data d̂(s, t) at each spatial cell s and year t: 

d̂(s, t) = B(s, t) × eη (9)  

η ∼ Normal(0, 0.2) (10) 

In the random sampling pattern, each spatial cell s had an equal 
probability of being selected, regardless of the underlying Pacific saury 
density distribution. The preferential sampling pattern was based on the 
principle that fishers are more likely to fish in areas of higher fish density 
(Allen and McGlade, 1986; Hilborn and Walters, 1987). For both the 
random and preferential sampling scenarios, sampling of 300 spatial 
cells within a time step was done with replacement. Using an explor-
atory analysis, we confirmed that a total of 300 observations could 
ensure recovering the “true” index under the random sampling pattern. 
In contrast to the random sampling pattern, the probability of a spatial 
cell s being selected (Ppref,s) in any given year for the preferential sam-
pling pattern was proportional to simulated fish density (Ducharme--
Barth et al., 2022): 

Ppref ,s =
(Bs)

φ

∑n

s=1
(Bs)

φ
(11)  

where the probability exponent φ controls the magnitude of preferential 
sampling. When φ = 0 all spatial cells have an equal probability of being 
sampled (e.g., random sampling). We set φ = 8 to impose a very strong 
degree of preferential sampling (extreme preferential sampling, Duch-
arme-Barth et al., 2022). Both fishing effort sampling patterns were 
simulated 40 times, resulting in a total of 80 datasets that were used to 
estimate abundance indices. It should be noted that the defined area 
strata in the Binary and Spatial clustering approaches and knot config-
urations in VAST would differ slightly among simulation runs since the 
simulated data varied with each iteration. 

2.8.2. CPUE standardization and performance evaluation 
Model performance in all simulations was evaluated relative to the 

“true” index. Prior to assessing model performance, each of the derived 
indices with area weighting (both estimated and true indices) was 
rescaled to a mean of 1 by dividing by its overall mean, respectively. 
Model performance was assessed based on three metrics: (1) the relative 
error metric in year y (REy); (2) the root mean squared error (RMSE) and 
(3) the bias metric described below. 

The relative error in each year was calculated as (Ono et al., 2015): 

REy =

(
Î y − Ty

)

Ty
(12)  

where ̂Iy and Ty are the estimated and true indices in year y. 
The measurement of model error was calculated as below (Stow 

et al., 2009; Ducharme-Barth et al., 2022): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

y=1
(Îy − Ty)

2

n

√
√
√
√
√

(13)  

where n is the number of years. A higher RMSE represents a greater error 
in the estimated index of abundance (Stow et al., 2009; Ducharme-Barth 
et al., 2022). 

The bias metric we considered was the coefficient β of the following 

the linear model (Thorson et al., 2015; Grüss et al., 2019; 
Ducharme-Barth et al., 2022): 

Î y = α+ β × Ty + εy (14)  

εy ∼ Normal
(
0, σ2

ε
)

(15)  

where α is the intercept, and β is the slope parameter from a linear model 
between the true index Ty and the estimated index of abundance ̂Iy. A β 
of 1 is indicative that changes in the true index are reflected accurately 
by the estimated index (i.e., unbiased), while a β greater than 1 (lower 
than 1) indicates that ̂Iy underestimates (overestimates) changes in the 
true index (Wilberg et al., 2010; Thorson et al., 2015). We also examined 
if the best model selected by conditional AIC and conditional R2 in the 
simulation test could provide the least biased representation of the true 
index pattern. 

3. Results 

3.1. Area stratifications and knots configuration 

The geographic boundary and variability of observed CPUE of the 
area strata obtained using the area stratification approaches are shown 
in Fig. 1. The studied area was separated into four strata by both the ad 
hoc method and the binary recursive algorithm (Fig. 1a and c). The 
inflection point in the change in AIC values was used to determine the 
optimal number of clusters (i.e., five area strata) in the Spatial 1 and 
Spatial 0.1 approaches, respectively (results not shown). The shape of 
the resulting area strata in Spatial 1 was less patchy than Spatial 0.1, due 
to the higher importance of spatial proximity with respect to the dif-
ference in underlying observed CPUE (Fig. 1e and g). For each area 
stratification approach, the mean observed CPUE among the area strata 
were significantly different (ANOVA test, p < 0.001) (Fig. 1b, d, f and h). 
For the VAST model, the 100 spatial knots were distributed in propor-
tion to the density of observations which resulted in relatively fewer 
knots towards the periphery of the spatial domain. Model convergence 
was confirmed by the fact that the Hessian matrix was positive definite 
and the maximum gradient component was smaller than 0.001. Most of 
the observed CPUE with higher values were located in the area where 
more spatial knots were distributed (Fig. 1i). This was not unexpected 
given the choice to allocate spatial knots in proportion to the underlying 
density of the fishery dependent samples, and implies some level of 
preferential sampling is present in the Pacific saury data. 

3.2. Comparison of the statistical performance 

All explanatory variables considered in the GLMMs were statistically 
significant (likelihood-ratio test, p < 0.005) (Table S1). The year 
× spatial random-effect coefficients for each GLMM have been assessed 
to follow a normal distribution (Shapiro-Wilk test; p > 0.05). In general, 
the VAST model had a higher conditional R2 and a lower conditional AIC 
value than the spatially stratified GLMMs (Table 1). In addition, by using 
the testing data from the five-fold cross-validations, the results sug-
gested that VAST had the highest mean values of the deviance explained 
(mean conditional R2 = 0.65) and Pearson’s correlation coefficient 
(mean ρ = 0.54) compared to the other GLMMs (Table 1). Overall, VAST 
outperformed the other GLMMs, with the best fit to the data, whereas 
the Ad hoc GLMM performed the worst. Besides the VAST model, the 
two spatial clustering GLMMs appeared to perform better than the other 
spatially stratified models based on the results of the goodness-of-fit and 
five-fold cross-validations (Table 1). 
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3.3. Trends in nominal and standardized indices 

Trends in nominal and standardized indices for Pacific saury without 
area-weighting illustrated large fluctuations ( Fig. 2a). Annual trends of 
nominal and standardized CPUE were consistent with each other during 
1997 – 2008, except for the Binary GLMM in 2000. An increasing trend 
of nominal and standardized CPUE was observed during 2009 – 2014, 
but the standardized CPUE exhibited a pattern of large interannual 
variability. Both nominal and standardized CPUE showed a decreasing 
trend during 2015 – 2019. The CVs of annual relative abundance indices 
derived from the Binary GLMM (0.23 – 0.33) and VAST (0.10 – 0.21) 
showed a decreasing temporal trend while the CVs from the other 
GLMMs were relatively stable in the late time period (Fig. 2b). 

The area-weighted abundance indices calculated from all GLMMs 

had a smaller variation than the abundance indices without the area- 
weighting approach (Fig. S5). We compared the derived abundance 
indices with and without the area-weighting approach from the spatially 
stratified GLMMs (Fig. S6). For the Ad hoc and Spatial 1 GLMMs, each 
area strata had a similar surface area (i.e., similar spatial weighting) 
which caused the derived weighted standardized abundance indices to 
be very similar to the un-weighted indices (Fig. S6a and c). However, the 
derived abundance indices from the Binary and Spatial 0.1 GLMMs had 
more weighting from Area III and Area IV, respectively. Therefore, the 
weighted abundance index diverged slightly from the un-weighted 
standardized abundance index (Fig. S6b and d). 

Fig. 1. The resulting area stratifications with boxplots of observed CPUEs for each area strata are determined by (a-b) the Ad hoc approach (four area strata), (c-d) 
the Binary approach (four area strata), (e-f) the Spatial 1 (five area strata), (g-h) the Spatial 0.1 (five area strata); and the (i) knot (in black points) configuration of 
VAST with the observed CPUE (in red colors) by using the Pacific saury data in Northwestern Pacific Ocean during 1997–2019. Star symbols on boxplot represent the 
significance levels with the overall mean of observed CPUEs (****: p < = 0.0001, ***: p < = 0.001, **: p < = 0.01) by using the ANOVA test. 

Table 1 
Summary statistics of Ad hoc, Binary, Spatial 1, Spatial 0.1 GLMMs, and VAST fitted to Pacific saury CPUE data from Northwestern Pacific Ocean during 1997 – 2019. 
The conditional R2 denotes the conditional explained residuals, the ΔAIC is the difference between the conditional AIC and that of the best model. The mean con-
ditional R2 is the explained value of the training data and the mean rho value (ρ) is the Pearson’s correlation coefficient derived from the observed and predicted CPUE 
of the testing data based on the five-fold cross-validations by repeated 10 times. The CV represents the coefficients of variation for the conditional R2 and ρ from the 
five-fold cross-validations, respectively.  

Model 

Goodness-of-fit Cross-validations 

conditional conditional 
Δ AIC 

mean 
CV mean ρ CV R2 AIC conditional R2 

Ad hoc 0.27 534,365 14,063 0.25 0.023 0.43 0.014 
Binary 0.34 529,145 8843 0.32 0.018 0.48 0.016 
Spatial 1 0.37 525,713 5411 0.36 0.011 0.52 0.014 
Spatial 0.1 0.39 524,864 4562 0.39 0.015 0.53 0.017 
VAST 0.68 520,302 0 0.65 0.005 0.54 0.008  

J. Hsu et al.                                                                                                                                                                                                                                      



Fisheries Research 255 (2022) 106440

8

3.4. Influence of explanatory variables on annual relative abundance 
indices 

The AI plots of the GLMMs, which present the influence of each 
variable in relation to the differences between standardized and un-
standardized CPUE are shown in Fig. 3. AI values for the spatial and year 
× spatial effects varied among the five GLMMs. In contrast, the AI values 
for the vessel and quadratic SST effects, respectively, had consistent 
trends among GLMMs. This result demonstrated the importance of the 
spatial treatment in the GLMMs (for example, see Fig. 2a). The sub-
stantial discrepancy between annual relative abundance indices 
compared to the unstandardized CPUE during 2009 – 2014 could be 
explained by the larger variation of the AI values for the year × spatial 
effect (0.81 – 1.45) and the increasing AI values of the vessel effect (0.94 
– 1.10) over the time period. The influence of vessel effect showed an 
obvious increasing trend in recent years (Fig. 3). The higher AI values for 
the vessel effect (1.15 – 1.27) among GLMMs compared to the effects of 
spatial and year × spatial effect (spatio-temporal effect) (0.80 – 1.24) 
during 2015 – 2019 caused the annual standardized CPUE to be less than 
the unstandardized CPUE. 

Overall influence for each variable indicated that the spatial, inter-
action of year × spatial, and vessel effects had greater overall influences 
on annual relative abundance indices than the quadratic SST effect 
(overall influence of SST is the smallest) (Table 2). Although the spatial 
and vessel effects generally had greater explanatory power (conditional 
R2) than the year × spatial effect in the spatially stratified GLMMs, its 
overall influence was less than that of the year × spatial effect. This 
result suggested that the variable with a higher explanatory power (i.e., 
spatial and vessel effects) may not necessarily indicate that it is influ-
ential on the difference between standardized and unstandardized 
CPUE. 

Fig. 2. Annual trends of (a) the relative standardized abundance indices 
without area-weighting (relative to mean), and (b) the coefficient of variation 
of standardized CPUE indices without area-weighting for the Ad hoc, Binary, 
Spatial 1, Spatial 0.1 GLMMs, and VAST for Pacific saury in the Northwestern 
Pacific Ocean during 1997 – 2019. Solid black points represent the annual 
nominal CPUEs for Pacific saury. 

Fig. 3. The annual influence of (a) spatial, (b) interaction of year and spatial/ 
spatio-temporal random effect, (c) vessel, and (d) quadratic water temperature 
effects for Ad hoc, Binary, Spatial 1, Spatial 0.1 GLMMs, and VAST for Pacific 
saury in the Northwestern Pacific Ocean during 1997 – 2019. 

Table 2 
Summary of the explanatory power (in conditional R2) and overall influence for 
each variable considered in the Ad hoc, Binary, Spatial 1, Spatial 0.1 GLMMs, 
and VAST by using the Pacific saury data in Northwestern Pacific Ocean during 
1997–2019.  

Model Variable Conditional R2 Overall influence 

Ad hoc 

Year  0.052 – 
SST+SST2  0.028 0.017 
Vessel  0.087 0.169 
Area  0.042 0.152 
Year×Area  0.065 0.259 

Binary 

Year  0.047 – 
SST+SST2  0.045 0.017 
Vessel  0.104 0.170 
Area  0.082 0.135 
Year×Area  0.064 0.301 

Spatial1 

Year  0.045 – 
SST+SST2  0.021 0.017 
Vessel  0.098 0.169 
Area  0.121 0.122 
Year×Area  0.087 0.221 

Spatial0.1 

Year  0.040 – 
SST+SST2  0.017 0.017 
Vessel  0.094 0.170 
Area  0.154 0.140 
Year×Area  0.087 0.225 

VAST 

Year  0.040 – 
SST+SST2  0.032 0.017 
Vessel  0.091 0.169 
Spatial  0.230 0.128 
Spatio-temporal  0.288 0.252  
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3.5. Exploration of the spatial treatments in influencing annual relative 
abundance indices 

The composite CDI plots of the spatial effects for spatially stratified 
GLMMs are shown in Fig. 4 and the spatial random effect for VAST is 
shown in Fig. 5. The AI values of spatial effects for the spatially stratified 
GLMMs were greater than one (vertical line in the right bottom panel of 
Fig. 4) before 2000, except for the Spatial 0.1 GLMM because a greater 
proportion of data was distributed in the area stratum (Area I for Ad hoc; 
Area III for Binary; and Area I for Spatial 1, respectively) with co-
efficients (spatial effect) larger than one (horizontal line in the top panel 
of Fig. 4). Conversely, a higher proportion of data concentrated in the 
area stratum (Area I) with a coefficient lower than one for the Spatial 0.1 
GLMM resulted in the AI values of the spatial effect to be below one 
during 1998 – 2000. The data were distributed uniformly across all area 
strata for all spatially stratified GLMMs during 2006 – 2014, thus the AI 
values of spatial effect were stable around one. The AI values of the 
spatial effect were consistently below one since 2015 for all spatially 
stratified GLMMs because a larger proportion of data had then shifted to 
the area stratum with a smaller coefficient (Area IV for Ad hoc; Area II 
for Binary; Area V for Spatial 1; and Area II and V for Spatial 0.1, 
respectively). For the VAST model, the AI values of the spatial random 
effect were above one before 2004 because a greater proportion of data 
tended to distribute in the grouped knots (grouped knots 17 – 20) with 
coefficients larger than one (Fig. 5). 

The composite CDI plot of the year × spatial effect for spatially 
stratified GLMMs is presented in Fig. 6. A substantially higher AI value 

for the year × spatial effect was observed in 2000 for the Binary GLMM 
and in 2006 for all spatially stratified GLMMs, respectively. This is due 
to a higher proportion of data that was distributed in Area III with a high 
coefficient (3.30) in 2000 for the Binary GLMM and in Areas III, II, IV, 
and V in 2006 for the Ad hoc (2.33), Binary (3.95), Spatial 1 (2.30), and 
Spatial 0.1 (1.63) GLMM, respectively. The CDI plot of the spatio- 
temporal effect for the VAST model is shown in Fig. 7. The higher AI 
values were observed in 2006 and 2007 for VAST because the co-
efficients were generally higher for those years. A smaller AI value was 
also observed in 2015 which resulted from a higher proportion of the 
data which had shifted to the grouped knots 1 – 3 with lower 
coefficients. 

3.6. Results of simulation test 

Relative errors (REs) from the simulation results showed that the 
VAST model could yield relative abundance indices closer to the “true” 
index (REs fluctuated around zero overtime without an apparent trend) 
for both sampling scenarios compared to other GLMMs (Fig. 8). VAST 
also had the smallest mean RMSE and the lowest bias (i.e., close to one) 
under either random or preferential sampling scenarios (Fig. 9). Ad hoc 
and Binary GLMMs generally had larger REs overtime (beyond or close 
to ± 20%) (Fig. 8a) and higher mean RMSE values (0.14 and 0.13) and 
provided the least accurate estimates of relative abundance index (mean 
bias = 1.02 and 0.97) than other approaches under the random sampling 
scenario (Fig. 9a). We noted that the Spatial 1 and 0.1 GLMMs generally 
performed equally as well as VAST under the random sampling scenario. 

Fig. 4. The coefficient-distribution-influence 
(CDI) plot of the spatial effect for Ad hoc, Bi-
nary, Spatial 1 and Spatial 0.1 GLMMs for Pa-
cific saury in the Northwestern Pacific Ocean 
during 1997– 2019. The top panel of the CDI 
plot provides the normalized coefficients and 
their standard errors for each area stratum (four 
area strata for Ad hoc, Binary GLMMs, and five 
area strata for Spatial 1 and Spatial 0.1 
GLMMs). In the bottom left panel, the bubbles 
indicate the annual distribution of observed 
CPUEs from each area stratum. A larger bubble 
represents a larger number of data records. The 
bottom right panel shows the annual value of 
influence for the spatial effect.   
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Fig. 5. The coefficient-distribution-influence 
(CDI) plot of the spatial random effect for the 
VAST model for Pacific saury in the North-
western Pacific Ocean during 1997 – 2019. The 
top panel of the CDI plot provides the normal-
ized coefficients and their standard errors. In 
the bottom left panel, bubbles indicate the 
annual distribution of observed CPUEs from 
each grouped knot (every five knots). A larger 
bubble represents a larger number of data re-
cords. The bottom right panel shows the annual 
value of influence for the spatial random effect.   

Fig. 6. The coefficient-distribution-influence 
(CDI) of the year × spatial interaction random 
effect for the Ad hoc, Binary, Spatial 1, and 
Spatial 0.1 GLMMs for Pacific saury in the 
Northwestern Pacific Ocean during 1997 – 
2019. The top panel of the plot provides the 
normalized coefficients for each area stratum 
(four area strata for Ad hoc, Binary GLMMs, and 
five area strata for Spatial 1 and Spatial 0.1 
GLMMs). The solid color points represent the 
coefficient for each year. The area coefficient in 
each year was jittered with small random noise 
for graphical visualization. In the bottom left 
panel, bubbles indicate the annual distribution 
of observed CPUEs from each area stratum. A 
larger bubble represents a larger number of 
data records. The bottom right panel shows the 
annual value of influence for the year × spatial 
interaction random effect.   
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However the Spatial 0.1 GLMM had a time trend in REs with substantial 
variation (Fig. 8i), the largest model error (mean RMSE = 0.18), and the 
highest bias (overestimate; mean bias = 0.89) compared to other 
GLMMs under the preferential sampling scenario (Fig. 9b). In general, 
all GLMMs showed higher model errors (i.e., larger mean RMSE) under 
the preferential sampling compared to the random sampling, however a 
pattern of larger mean bias was not observed (but SD of bias had 
increased) (Fig. 9). 

The model selection criteria (i.e., conditional R2 and conditional 
AIC) evaluated by the simulation results, the RMSE, and bias, consis-
tently showed that VAST was the best model under both sampling sce-
narios (Fig. S7). However, under the preferential sampling scenario, 
Spatial 0.1 GLMM had a greater value for the conditional R2 and a lower 
conditional AIC value than the Ad hoc and Binary GLMMs (Fig. S7b). It 
was also the most inaccurate and biased representation of the true index 
based on the simulation results of RE, RMSE, and bias metrics (Figs. 8i 

Fig. 7. The coefficient-distribution-influence 
(CDI) plot of spatio-temporal random effect 
for the VAST model for Pacific saury in the 
Northwestern Pacific Ocean during 1997 – 
2019. The top panel of the plot provides the 
normalized coefficient for each grouped knot 
(every five knots). The solid color points 
represent the coefficient for each year. The 
grouped knots coefficient in each year was jit-
tered with small random noise for graphical 
visualization. In the bottom left panel, bubbles 
indicate the annual distribution of observed 
CPUEs from each grouped knot. A larger bubble 
represents a larger number of data records. The 
bottom right panel shows the annual value of 
influence for the spatio-temporal random effect.   

Fig. 8. Time series of relative error (RE) in the index of abundance. The dark and light grey polygon represents the 80% and 95% confidence interval, respectively. 
RE is calculated for Ad hoc, Binary, Spatial 1 and Spatial 0.1 GLMMs, and VAST with the two sampling scenarios (random and preferential samplings). The grey 
horizontal dashed line is the reference line (±0.2) for the relative errors. 
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and 9b). This suggested that model selection criteria did not produce a 
consistent ranking of models when compared to their performance in 
fitting the true index. 

4. Discussion 

We applied an influence analysis to understand the standardization 
effects of explanatory variables included in the five GLMMs with Pacific 
saury fishery data. We noted that an increasing influence trend of vessel 
effect was observed in recent years. This implied a temporal change in 
catchability in the Taiwanese stick-held dip net fishery. Catchability 
changes occur in most fisheries (Wilberg et al., 2010), which if unac-
counted for in the CPUE standardization could lead to an error of 
overestimating the Pacific saury abundance index in recent years. This 
study also extended the original influ package to accommodate the 
interaction between year × spatial effects in spatially stratified GLMMs 
and to the spatio-temporal effect of spatio-temporal model (i.e., VAST). 
The year × spatial or spatio-temporal effect was identified as the most 
influential effect, with large coefficients and substantial interannual 
variation, resulting in large variations of AI values in the influence plot. 
It is worth noting that the annual influence values of year × spatial 
interaction in the spatially stratified GLMMs had substantial AI values in 
2000 and 2006 (Fig. 3b). This could imply that the assumed spatial 
structure was mis-specified and resulted in estimated coefficients that 
were extremely large in certain years. 

Our results also showed that the variable with the most explanatory 
power according to deviance explained (i.e., vessel or area variable of 
Pacific saury example) may not have had the greatest influence on the 
difference between unstandardized and standardized CPUE. Overall, we 
conclude that the difference between standardized and unstandardized 
CPUE in the Pacific saury fishery could primarily be explained by the 
year × spatial or spatio-temporal effect which could be related to 
changes in fishing location or shifts in fish distribution over time 
(Hashimoto et al., 2020; Hsu et al., 2021). There was also evidence for 
shifts in the fleet toward more efficient vessels, as seen in the influence 
plot and overall influence metric for the vessel variable. 

In the real-world application using Pacific saury fishery data, VAST 
had a superior performance in terms of the conditional AIC values, 
deviance explained (in conditional R2), and five-fold cross-validations 

(mean conditional R2 and Pearson’s correlation coefficient) than the 
other GLMMs. Furthermore, under both sampling scenarios, the VAST 
model achieved a better performance in terms of lower model error (the 
smallest RMSE) and bias (bias value is close to one) than the other 
spatially stratified GLMMs. This is because VAST can efficiently define 
how fish density varies continuously across space (Kristensen et al., 
2014) and describe the patterns in density distribution over time (un-
explained variability; Thorson and Barnett, 2017; Hsu et al., 2021; Han 
et al., 2021) using spatial and spatio-temporal random effects imple-
mented with a stochastic partial differential equation approach 
(Lindgren et al., 2011). We concluded that a spatio-temporal model such 
as the one implemented using VAST can more appropriately capture the 
spatial heterogeneity of CPUE data based on the simulation. Addition-
ally, VAST is more robust to deviation from random sampling than the 
other GLMMs used in this study. A study for pelagic sharks by Kai (2019) 
also indicated that the inclusion of spatio-temporal random effects in a 
spatio-temporal model could minimize residual variability and the 
fitting of a GLMM with spatial random effects was better than that of 
GLMs with fixed spatial effects. Furthermore, the VAST model repre-
sented a more direct approach to a conventional CPUE analysis because 
it is not necessary to conduct the area stratification in advance. The 
present study contributed to a growing literature suggesting that using a 
spatio-temporal approach such as VAST is more statistically efficient (i. 
e., have greater precision for a given amount of data; Fig. 2b) than 
analyzing data using spatially stratified models (Thorson et al., 2015; 
Kai, 2019; Grüss et al., 2019; Zhou et al., 2019). 

The ad hoc GLMM showed the poorest performance in terms of its 
conditional R2, conditional AIC, and five-fold cross-validations among 
the spatially stratified GLMMs for the Pacific saury fishery data. For this 
reason, we argue that the currently used four area strata, separated in an 
ad hoc manner according to bathymetric contours may not accurately 
reflect the spatial heterogeneity of Pacific saury density. This inference 
was supported by our simulation experiment which showed that, 
regardless of the sampling patterns, the Ad hoc GLMM had greater 
model errors of index estimation than the Binary and Spatial 1 ap-
proaches. Noting that most CPUE standardization analyses often use an 
ad hoc approach (e.g., Nakano, 1998; Haltuch et al., 2013), the most 
immediate implication of this study is the need for caution when an ad 
hoc method is used. However, we noted that other ad hoc spatial 

Fig. 9. The boxplots of performance metrics for the (a,b) root mean squared error (RMSE) and (c,d) bias metrics calculated across all replicates under the two spatial 
sampling scenarios (random and preferential samplings) for the Ad hoc, Binary, Spatial 1, Spatial 0.1 GLMMs and VAST. The numbers above the boxplots indicate the 
mean value of RMSE and bias metrics. Values in the parentheses are the standard deviations. The horizontal dashed line is the reference line for the bias metrics (one 
represents no bias). 
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structures exist (e.g., 5◦ × 5◦ grid) beyond the one explored in this 
analysis and their use for CPUE standardization should be evaluated in 
the context of this study in the future. 

The binary recursive algorithm based on AIC can be considered an 
objective area stratification approach. Our simulation results showed 
that a binary approach generally had a poor performance in index 
estimation (large RMSE and bias). This may reflect the fact that the bi-
nary partitioning approach is constrained to generate rectangular area 
strata. However, in the real world, the distribution of fish density is 
unlikely to be structured as rectangular shapes. Of the remaining ap-
proaches evaluated, we found a higher conditional R2 and lower con-
ditional AIC by the Spatial 0.1 and Spatial 1 GLMMs than the Binary 
GLMM fitted to the Pacific saury fishery data (Table 1). The simulation 
results also indicated a good performance in index estimation by the 
Spatial 0.1 and Spatial 1 GLMMs under the random sampling scenario. 
In general, the spatial clustering approach creates a flexible shape for the 
area strata (based on similarity of average CPUE and spatial proximity of 
areas) that may reflect the patchy nature of Pacific saury habitats 
(associated with eddies and SST fronts, Kuroda and Yokouchi, 2017; 
Ichii et al., 2018) better than rectangular area strata. However, we noted 
that the simulation result of the Spatial 0.1 approach (highly 
density-weighted) under the preferential sampling scenario had the 
largest model error and bias of index estimation relative to the other 
GLMMs. In addition, a simulation study by Ono et al. (2015) suggested 
that the Spatial 0.1 approach could lead to poorer index estimation 
when there was a directional change in the fishing ground over time. It 
should be noted that such patterns of directional change in the fishing 
ground were also observed in the Pacific saury fishery. Hashimoto et al. 
(2020) and Hsu et al. (2021) reported that the centroid of gravity of the 
Pacific saury fishing ground has slightly moved eastward following a 
shift in the fish distribution. 

We identified inconsistencies in the results based on the model se-
lection criteria (conditional R2 and conditional AIC) compared to the 
simulation results for the Spatial 0.1 approach, which implied that 
model selection criteria are not necessarily the best way to finding the 
model that produces the most unbiased index of abundance. This also 
highlights the fact that simulation testing is an important aspect in 
evaluating CPUE standardization methods (Ono et al., 2015; Grüss et al., 
2019; Ducharme-Barth et al., 2022), and we recommend its use. Overall, 
we recommended that a highly density-weighted spatial cluster-based 
approach (i.e., Spatial 0.1) may not be useful when there is a 
non-random spatiotemporal distribution of fishers relative to that of fish 
populations and fish distribution shift. However, based on the simula-
tion results, the Spatial 1 approach could be a reasonable alternative for 
defining spatial strata if a spatio-temporal analysis is not possible. 

In the current VAST analysis, we assumed an unbalanced spatial knot 
structure where knots were allocated spatially using a k-means algo-
rithm in proportion to sampling intensity. A sensitivity to this choice was 
explored and though it was determined that specifying the spatial knots 
in proportion to sampling intensity versus uniformly across the spatial 
domain did not meaningfully impact the mean index, it did impact the 
associated uncertainty estimates with the uniform knot distribution 
resulting in larger estimated CVs. This is likely due to the sparsity (or 
absence) of samples corresponding to knots at the periphery of the 
spatial distribution resulting in larger estimates of uncertainty. This may 
be a desirable property if the spatial domain of the model is correctly 
specified to match the spatial distribution of the underlying population, 
with the increased uncertainty representing a lack of sampling of the 
population in certain areas. However, if the spatial domain is mis- 
specified (e.g., overly broad relative to the spatial distribution of the 
underlying population) then this increased variance may be inappro-
priate. We noted that previous studies (Grüss et al., 2019; 
Ducharme-Barth et al., 2022) have indicated that using a uniform allo-
cation of knots in VAST may improve the index estimation when applied 
to spatially-imbalanced data (e.g., fishery-dependent data). To our 
knowledge, however, there has not been a study that explicitly compares 

the performance of different knot structures in VAST. We recommend 
that future studies investigate the impact of different configurations of 
knot allocation in VAST on the index estimation and associated uncer-
tainty to assist in further improvement. 

The Taiwanese stick-held dip net logbook data does not contain zero 
catch values due to fishers attracting Pacific saury schools with fishing 
lamps. In addition to the previously mentioned issue with the effort 
definition (hauls v.s days), not including information on fishing lamps 
may also lead to non-proportionality involving standardized CPUE 
remaining high while abundance declines. This is known as hyper-
stability (Hilborn and Walters, 1992) and can lead to overestimation of 
biomass and underestimation of fishing mortality (Crecco and Over-
holtz, 1990). Such information on the number and/or power of lamps 
may be implicitly addressed by the random vessel effect in the current 
study. However, the inclusion of a vessel random effect can likely only 
account for differences in fishing power across vessels and can not ac-
count for temporal changes in the fishing power of a single vessel. We 
encourage the collection of these key catchability information in the 
logbook so that they can be included in the CPUE standardization 
explicitly. We also recommend that future studies examine the impact 
on CPUE standardization model performance of the various treatments 
for the vessel random effect (e.g., random covariate in spatially stratified 
GLMMs and mean-zero random effect with a standard deviation of one 
in VAST; Xu et al., 2019; Ducharme-Barth et al., 2022) as it was beyond 
the scope of this study, although results from the influence analysis 
(Fig. 3c) indicated that the impact on the mean index is likely similar. 

5. Conclusions 

CPUE standardization is essential to stock assessment, and a stan-
dardized CPUE index is often the major source of data to assess the stock 
status in commercial or recreational fisheries (Hilborn and Walters, 
1992). We have provided a real-world example (fishery-dependent 
CPUE of Pacific saury) and a simulation experiment to compare the 
performance of various spatial treatments within a consistent GLMM 
framework. Our results build upon a growing body of work (Grüss et al., 
2019; Zhou et al., 2019) which indicates that explicitly modelling the 
spatial autocorrelation structure of the data using GMRFs in a 
spatio-temporal modelling framework (such as VAST) can account for 
and provide a more precise treatment to address the spatial heteroge-
neity of CPUE data. In contrast, the use of area stratifications determined 
in an ad hoc manner or constrained to rectangular grids may cause the 
underlying fish density distribution to be misinterpreted. Although the 
most extreme spatial clustering approach (Spatial 0.1) created a flexible 
shape for the area strata, this approach may lead to a substantial model 
error and bias in index estimation if the spatiotemporal distribution of 
fishers is non-random and non-stationary relative to that of the under-
lying fish distribution. A less extreme spatial clustering approach 
(Spatial 1) could be a reasonable alternative for defining spatial areas, 
based on the simulation results, if it is not possible to apply a 
spatio-temporal modelling framework. 

Most CPUE standardization analyses have focused on the resulting 
abundance indices arising from the CPUE standardization model(s), but 
did not explore how the inclusion of each explanatory variable in the 
model affected the standardized index. The influence analysis of each 
explanatory variable can be a useful tool in helping analysts understand 
the difference(s) between unstandardized and standardized indices. In 
this study, we extended the original influ package to a spatio-temporal 
modelling framework such as VAST and also considered the influence 
analysis for the year × spatial interaction term. Although this study was 
focused on Pacific saury, the methodology should be broadly applicable 
to other fisheries for which similar data are available. Hence, the 
methods and analysis we have presented can now be considered as 
standard tools for conducting CPUE standardization analyses. 
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Appendix A. Supplementary materials 

The R codes utilized to conduct the binary and spatial clustering area 
stratification and the influence analyses for the spatial and spatio- 
temporal random effects for VAST are accessible at the following 
GitHub repository: https://github.com/jhenhsuNTU/spatial.treatment. 
influ.analysis.manuscript. 
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Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.fishres.2022.106440. 

References 

Allen, P.M., McGlade, J.M., 1986. Dynamics of discovery and exploitation: the case of the 
Scotian shelf groundfish fisheries. Can. J. Fish. Aquat. Sci. 43 (6), 1187–1200. 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models 
using lme4. J. Stat. Softw. 67, 1–48. 

Battaile, B.C., Quinn II, T.J., 2004. Catch per unit effort standardization of the eastern 
Bering Sea walleye pollock (Theragra chalcogramma) fleet. Fish. Res. 70, 161–177. 

Bentley, N., Kendrick, T.H., Starr, P.J., Breen, P.A., 2012. Influence plots and metrics: 
tools for better understanding fisheries catch-per-unit-effort standardizations. ICES 
J. Mar. Sci. 69, 84–88. 

Bishop, J., 2006. Standardizing fishery-dependent catch and effort data in complex 
fisheries with technology change. Rev. Fish. Biol. Fish. 16, 21–38. 

Burnham, K.P., Anderson, D.R., 2002. A practical information-theoretic approach. Model 
Selection and Multimodel Inference, second ed. Springer, New York, p. 488. 

Campbell, R.A., 2004. CPUE standardisation and the construction of indices of stock 
abundance in a spatially varying fishery using general linear models. Fish. Res. 70, 
209–227. 

Campbell, R.A., 2015. Constructing stock abundance indices from catch and effort data: 
Some nuts and bolts. Fish. Res. 161, 109–130. 

Chang, Y.J., Lan, K.W., Walsh, W.A., Hsu, J., Hsieh, C.H., 2019. Modelling the impacts of 
environmental variation on habitat suitability for Pacific saury in the Northwestern 
Pacific Ocean. Fish. Oceano 28, 291–304. 

Clark, C.W., Mangel, M., 1979. Aggregation and fishery dynamics - theoretical study of 
schooling and the purse seine tuna fisheries. Fish. Bull. 77, 317–337. 

Conn, P.B., Thorson, J.T., Johnson, D.S., 2017. Confronting preferential sampling when 
analysing population distributions: diagnosis and model-based triage. Methods Ecol. 
Evol. 8, 1535–1546. 

Crecco, V., Overholtz, W.J., 1990. Causes of density-dependent catchability for Georges 
Bank haddock Melanogrammus aeglefinus. Can. J. Fish. Aquat. Sci. 47 (2), 385–394. 

Ducharme-Barth, N.D., Grüss, A., Vincent, M.T., Kiyofuji, H., Aoki, Y., Pilling, G., 
Hampton, J., Thorson, J.T., 2022. Impacts of fisheries-dependent spatial sampling 

patterns on catch-per-unit-effort standardization: a simulation study and fishery 
application. Fish. Res. 246, 106169. 

Feenstra, J., McGarvey, R., Linnane, A., Haddon, M., Matthews, J., Punt, A.E., 2019. 
Impacts on CPUE from vessel fleet composition changes in an Australian lobster 
(Jasus edwardsii) fishery. N. Z. J. Mar. Freshw. Res. 53, 292–302. 

Forrestal, F.C., Schirripa, M., Goodyear, C.P., Arrizabalaga, H., Babcock, E.A., Coelho, R., 
Ingram, W., Lauretta, M., Ortiz, M., Sharma, R., 2019. Testing robustness of CPUE 
standardization and inclusion of environmental variables with simulated longline 
catch datasets. Fish. Res. 210, 1–13.  

Glazer, J.P., Butterworth, D.S., 2002. GLM-based standardization of the catch per unit 
effort series for South African west coast hake, focusing on adjustments for targeting 
other species. Afr. J. Mar. Sci. 24, 323–339. 

Greven, S., Kneib, T., 2010. On the behaviour of marginal and conditional AIC in linear 
mixed models. Biometrika 97, 773–789. 

Grüss, A., Walter III, J.F., Babcock, E.A., Forrestal, F.C., Thorson, J.T., Lauretta, M.V., 
Schirripa, M.J., 2019. Evaluation of the impacts of different treatments of spatio- 
temporal variation in catch-per-unit-effort standardization models. Fish. Res. 213, 
75–93. 

Haltuch, M.A., Ono, K., Valero, J.L., 2013. Status of the U.S. Petrale Sole Resource in 
2012. Pacific Fishery Management Council, Portland, Oregon. 

Han, Q., Grüss, A., Shan, X., Jin, X., Thorson, J.T., 2021. Understanding patterns of 
distribution shifts and range expansion/contraction for small yellow croaker 
(Larimichthys polyactis) in the Yellow Sea. Fish. Oceano 30, 69–84. 

Hashimoto, M., Kidokoro, H., Suyama, S., Fuji, T., Miyamoto, H., Naya, M., Kitakado, T., 
2020. Comparison of biomass estimates from multiple stratification approaches in a 
swept area method for Pacific saury Cololabis saira in the western North Pacific. Fish. 
Sci. 1–12. 

Hashimoto, M., Nishijima, S., Yukami, R., Watanabe, C., Kamimura, Y., Furuichi, S., 
Ichinokawa, M., Okamura, H., 2019. Spatiotemporal dynamics of the Pacific chub 
mackerel revealed by standardized abundance indices. Fish. Res. 219, 105315. 

Hashimoto, M., Naya, M., Suyama, S., Nakayama, S.I., Fuji, T., Miyamoto, H., Kawabata, 
A., Nakatsuka, S. 2021. Standardized CPUE of Pacific saury (Cololabis saira) caught 
by the Japanese stick-held dip net fishery up to 2020. NPFC-2021-SSC PS07-WP07. 

Hilborn, R., Walters, C.J., 1987. A general model for simulation of stock and fleet 
dynamics in spatially heterogeneous fisheries. Can. J. Fish. Aquat. Sci. 44, 
1366–1369. 

Hilborn, R., Walters, C.J., 1992. Quantitative Fisheries Stock Assessment and 
Management: Choice, Dynamics and Uncertainty. Chapman & Hall, New York, 
p. 570. 

Holdsworth, J.C., Saul, P.J., 2017. Striped marlin catch and CPUE in the New Zealand 
sport fishery 2013-14 to 2015-16. N. Z. Fish. Assess. Rep. 18, 27. 

Hoyle, S.D., Huang, H., Kim, D.N., Lee, M.K., Matsumoto, T., Walter, J., 2019. 
Collaborative study of bigeye tuna CPUE from multiple Atlantic Ocean longline fleets 
in 2018. Collect. Vol. Sci. Pap. ICCAT, 75, 2033–2080. 

Hsu, J., Chang, Y.J., Kitakado, T., Kai, M., Li, B., Hashimoto, M., Park, K.J., 2021. 
Evaluating the spatiotemporal dynamics of Pacific saury in the Northwestern Pacific 
Ocean by using a geostatistical modelling approach. Fish. Res. 235, 105821. 

Huang, W.B., Chang, Y.J., Hsieh, C.H., 2020. Standardized CPUE of Pacific saury 
(Cololabis saira) caught by the Chinese Taipei stick-held dip net fishery up to 2019. 
NPFC-2020-SSC PS06-WP05. 

Huang, W.B., Chang, Y.J., Hsieh, C.H., 2021. Standardized CPUE of Pacific saury 
(Cololabis saira) caught by the Chinese Taipei stick-held dip net fishery up to 2020. 
NPFC-2021-SSC PS07-WP14. 

Huang, W.B., Lo, N.C., Chiu, T.S., Chen, C.S., 2007. Geographical distribution and 
abundance of Pacific saury, Cololabis saira (Brevoort) (Scomberesocidae), fishing 
stocks in the northwestern Pacific in relation to sea temperatures. Zool. Res. 46, 705.  

Ichii, T., Nishikawa, H., Mahapatra, K., Okamura, H., Igarashi, H., Sakai, M., Suyama, S., 
Nakagami, M., Naya, M., Usui, N., Okada, Y., 2018. Oceanographic factors affecting 
interannual recruitment variability of Pacific saury (Cololabis saira) in the central 
and western North Pacific. Fish. Oceanogr. 00, 1–13. 

Ichinokawa, M., Brodziak, J., 2010. Using adaptive area stratification to standardize 
catch rates with application to North Pacific swordfish (Xiphias gladius). Fish. Res. 
106, 249–260. 

IOC-IHO-BODC, A., 2003. Centenary Edition of the GEBCO Digital Atlas. The 
Intergovernmental Oceanographic Commission, The International Hydrographic 
Organization and the British Oceanographic Data Centre, Liverpool, UK. 

Kai, M., 2019. Spatio-temporal changes in catch rates of pelagic sharks caught by 
Japanese research and training vessels in the western and central North Pacific. Fish. 
Res. 216, 177–195. 

Kai, M., Thorson, J.T., Piner, K.R., Maunder, M.N., 2017. Spatiotemporal variation in 
size-structured populations using fishery data: an application to shortfin mako 
(Isurus oxyrinchus) in the Pacific Ocean. Can. J. Fish. Aquat. Sci. 74, 1765–1780.  

Kaufman, L., Rousseeuw, P.J., 1990. Finding Groups in Data: An Introduction to Cluster 
Analysis. Wiley, New Jersey.  

Kristensen, K., Thygesen, U.H., Andersen, K.H., Beyer, J.E., 2014. Estimating 
spatiotemporal dynamics of size-structured populations. Can. J. Fish. Aquat. Sci. 71, 
326–336. 

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., Bell, B.M., 2016. TMB: Automatic 
differentiation and Laplace approximation. J. Stat. Softw. 70, 1–21.  

Kuroda, H., Yokouchi, K., 2017. Interdecadal decrease in potential fishing areas for 
Pacific saury off the southeastern coast of Hokkaido, Japan. Fish. Oceano 26, 
439–454. 

Lindgren, F., Rue, H., Lindström, J., 2011. An explicit link between Gaussian fields and 
Gaussian Markov random fields: the stochastic partial differential equation 
approach. J. R. Stat. Soc. B Stat. Methodol. 73, 423–498. 

J. Hsu et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.fishres.2022.106440
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref1
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref1
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref2
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref2
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref3
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref3
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref4
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref4
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref4
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref5
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref5
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref6
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref6
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref7
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref7
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref7
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref8
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref8
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref9
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref9
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref9
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref10
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref10
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref11
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref11
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref11
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref12
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref12
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref13
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref13
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref13
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref13
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref14
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref14
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref14
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref15
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref15
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref15
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref15
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref16
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref16
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref16
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref17
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref17
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref18
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref18
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref18
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref18
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref19
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref19
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref19
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref20
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref20
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref20
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref20
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref21
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref21
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref21
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref22
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref22
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref22
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref23
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref23
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref23
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref24
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref24
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref25
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref25
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref25
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref26
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref26
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref26
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref27
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref27
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref27
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref27
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref28
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref28
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref28
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref29
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref29
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref29
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref30
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref30
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref30
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref31
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref31
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref32
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref32
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref32
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref33
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref33
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref34
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref34
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref34
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref35
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref35
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref35


Fisheries Research 255 (2022) 106440

15

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., 2014. Cluster: Cluster 
Analysis Basics and Extensions R Package Version 1.15.2. 

Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort data: a review of recent 
approaches. Fish. Res. 70, 141–159. 

Maunder, M.N., Sibert, J.R., Fonteneau, A., Hampton, J., Kleiber, P., Harley, S.J., 2006. 
Interpreting catch per unit effort data to assess the status of individual stocks and 
communities. ICES J. Mar. Sci. 63, 1373–1385. 

Maunder, M.N., Thorson, J.T., Xu, H., Oliveros-Ramos, R., Hoyle, S.D., Tremblay- 
Boyer, L., Lee, H.H., Kai, M., Chang, S.-K., Kitakado, T., Albertsen, C.M., Minte- 
Vera, C.V., Lennert-Cody, C.E., Aires-da-Silva, A.M., Piner, K.R., 2020. The need for 
spatiotemporal modeling to determine catch-per-unit effort based indices of 
abundance and associated composition data for inclusion in stock assessment 
models. Fish. Res. 229, 105594. 

Miyabe, N., Takeuchi, Y. 2003. Standardized bluefin CPUE from the Japanese longline 
fishery in the Atlantic and Mediterranean Sea up to 1999. Collect. Vol. Sci. Pap. 
ICCAT, 52, 1130–1144.  

Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from 
generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. 

Nakano, H. 1998. Stock status of Pacific swordfish, Xiphias gladius, inferred from CPUE 
of the Japanese longline fleet standardized using general linear models. US Nat. Mar. 
Fish. Serv., NOAA Tech. Rep. NMFS, 142, 195–209. 

Ono, K., Punt, A.E., Hilborn, R., 2015. Think outside the grids: an objective approach to 
define spatial strata for catch and effort analysis. Fish. Res. 170, 89–101. 

Ortiz, M., Arocha, F., 2004. Alternative error distribution models for standardization of 
catch rates of non-target species from a pelagic longline fishery: billfish species in the 
Venezuelan tuna longline fishery. Fish. Res. 70, 275–294. 

Pinheiro, J.C., Bates, D.M. 2000. Linear mixed-effects models: basic concepts and 
examples. Mixed-effects models in S and S-Plus, 3–56. 

Punt, A.E., Walker, T.I., Taylor, B.L., Pribac, F., 2000. Standardization of catch and effort 
data in a spatially-structured shark fishery. Fish. Res. 45, 129–145. 

Quinn II, T.J., Hoag, S.H., Southward, G.M., 1982. Comparison of two methods of 
combining catch-per-unit-effort data from geographic regions. Can. J. Fish. Aquat. 
Sci. 39, 837–846. 

R Core Team, 2021. R: a language and environment for statistical computing [online]. R 
Foundation For Statistical Computing, Vienna, Austria. Available from 〈http://www. 
R-project.org/〉. 

Rose, G.A., Leggett, W.C., 1991. Effects of biomass range interactions on catchability of 
migratory demersal fish by mobile fisheries - an example of Atlantic cod (Gadus 
morhua). Can. J. Fish. Aquat. Sci. 48, 843–848.  

Rose, G.A., Kulka, D.W., 1999. Hyperaggregation of fish and fisheries: how catch-per- 
unit-effort increased as the northern cod (Gadus morhua) declined. Can. J. Fish. 
Aquat. Sci. 56, 118–127. 

Sculley, M.L., Brodziak, J., 2020. Quantifying the distribution of swordfish (Xiphias 
gladius) density in the Hawaii-based longline fishery. Fish. Res. 230, 105638. 

Shelton, A.O., Thorson, J.T., Ward, E.J., Feist, B.E., 2014. Spatial semiparametric models 
improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 
71, 1655–1666. 

Shono, H., 2014. Application of support vector regression to CPUE analysis for southern 
bluefin tuna Thunnus maccoyii, and its comparison with conventional methods. Fish. 
Sci. 80, 879–886. 

Stow, C.A., Jolliff, J., McGillicuddy, D.J., Doney, S.C., Allen, J.I., Friedrichs, M.A., 
Rose, K.A., Wallhead, P., 2009. Skill assessment for coupled biological/physical 
models of marine systems. J. Mar. Syst. 76, 4–15. 

Swain, D.P., Sinclair, A.F., 1994. Fish Distribution and catchability - What is the 
appropriate measure of distribution. Can. J. Fish. Aquat. Sci. 51, 1046–1054. 

Thorson, J.T., 2019. Guidance for decisions using the Vector Autoregressive Spatio- 
Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. 
Fish. Res. 210, 143–161. 

Thorson, J.T., Kristensen, K., 2016. Implementing a generic method for bias correction in 
statistical models using random effects, with spatial and population dynamics 
examples. Fish. Res. 175, 66–74. 

Thorson, J.T., Barnett, L.A., 2017. Comparing estimates of abundance trends and 
distribution shifts using single-and multispecies models of fishes and biogenic 
habitat. ICES J. Mar. Sci. 74, 1311–1321.  

Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015. Geostatistical delta- 
generalized linear mixed models improve precision for estimated abundance indices 
for West Coast groundfishes. ICES J. Mar. Sci. 72, 1297–1310. 

Wilberg, M.J., Thorson, J.T., Linton, B.C., Berkson, J., 2010. Incorporating time-varying 
catchability into population dynamic stock assessment models (Incorporating Time- 
Varying Catchability into Population Dynamic Stock Assessment Models). Rev. Fish. 
Sci. 18, 7–24. 

Winker, H., Kerwath, S.E., Attwood, C.G., 2013. Comparison of two approaches to 
standardize catch-per-unit-effort for targeting behaviour in a multispecies hand-line 
fishery. Fish. Res. 139, 118–131. 

Xu, H., Lennert-Cody, C.E., Maunder, M.N., Minte-Vera, C.V., 2019. Spatiotemporal 
dynamics of the dolphin-associated purse-seine fishery for yellowfin tuna (Thunnus 
albacares) in the eastern Pacific Ocean. Fish. Res. 213, 121–131. 

Zhou, S., Campbell, R.A., Hoyle, S.D., 2019. Catch per unit effort standardization using 
spatio-temporal models for Australia’s Eastern Tuna and Billfish Fishery. ICES J. 
Mar. Sci. 76, 1489–1504. 

J. Hsu et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref36
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref36
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref37
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref37
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref37
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref38
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref38
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref38
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref38
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref38
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref38
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref39
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref39
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref40
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref40
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref41
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref41
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref41
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref42
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref42
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref43
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref43
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref43
http://www.R-project.org/
http://www.R-project.org/
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref44
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref44
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref44
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref45
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref45
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref45
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref46
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref46
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref47
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref47
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref47
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref48
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref48
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref48
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref49
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref49
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref49
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref50
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref50
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref51
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref51
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref51
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref52
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref52
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref52
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref53
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref53
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref53
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref54
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref54
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref54
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref55
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref55
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref55
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref55
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref56
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref56
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref56
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref57
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref57
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref57
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref58
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref58
http://refhub.elsevier.com/S0165-7836(22)00217-X/sbref58

	Evaluation of the influence of spatial treatments on catch-per-unit-effort standardization: A fishery application and simul ...
	1 Introduction
	2 Materials and methods
	2.1 Pacific saury fishery dataset and data filtering
	2.2 Spatially stratified GLMMs
	2.3 Spatial treatments in the spatially stratified GLMMs
	2.4 Spatio-temporal GLMM
	2.5 Statistical performance
	2.6 Standardized abundance indices
	2.7 Quantifying the influence of explanatory variables
	2.8 Evaluation using simulated data
	2.8.1 Sampling patterns
	2.8.2 CPUE standardization and performance evaluation


	3 Results
	3.1 Area stratifications and knots configuration
	3.2 Comparison of the statistical performance
	3.3 Trends in nominal and standardized indices
	3.4 Inﬂuence of explanatory variables on annual relative abundance indices
	3.5 Exploration of the spatial treatments in influencing annual relative abundance indices
	3.6 Results of simulation test

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A. Supplementary materials
	Appendix B Supporting information
	References




