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Summary 

We estimated a relative abundance index of spawning stock biomass (SSB) for the Pacific 

stock of chub mackerel with monthly egg density data obtained by research surveys. The 

monthly egg surveys have been conducted from 2005 to 2021 off the Pacific coast of 

Japan to cover the spawning ground of chub mackerel. We applied the vector-

autoregressive spatio-temporal (VAST) model to the survey data to derive the index of 

egg abundance, which should represent relative SSB. This document provides important 

references and diagnostics on this standardization according to the “CPUE 

Standardization Protocol for Chub Mackerel”. Since we found no serious problems in the 

diagnostics and confirmed the convergence of the spatio-temporal model, we suggest the 

estimated index can be utilized as an SSB abundance index for the forthcoming stock 

assessment of chub mackerel in the Technical Working Group for the Chub Mackerel 

Stock Assessment. 

 

(1). Literature review to identify the candidate explanatory variables 

 

Spatial variables: To account for the spatial autocorrelation and spatio-temporal 

interaction of the egg density (Kanamori et al. 2019), we incorporated the spatial and 

spatio-temporal random effects in the model. 

Environmental variables: Although sea surface temperature (SST) is known as 

possibly affecting spatial distribution of the spawning ground of chub mackerels 

(Kanamori et al. 2019), a previous document suggested that its influence was weak 

probably because the temporal resolution of our available SST data (annual mean) does 

not match the biological time scale of the spawning and egg hatching (Kanamori et al. 
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2018). Therefore, we did not include SST as the explanatory variable here, which would 

be a room for improvement of the standardization. 

 

 

(2). Spatio-temporal distributions of catch, effort, and CPUE. 

 

Survey summary: Conical or cylindrical conical plankton nets with mouth ring 

diameters of 45 or 60 cm and mesh sizes of 0.33 or 0.335 mm were towed vertically form 

150 m depth (if the depth was <150 m, nets were lowered to just above the bottom) (see 

details of survey method for Takasuka et al. 2008 a,b, Takasuka et al. 2017). 

 

Temporal distribution: The survey is conducted monthly from 2005 to 2021. Although 

the survey data was available throughout the year, we used the data obtained during 

January to June so that the main spawning season of chub mackerel was covered. Indeed, 

the mean egg density was substantially higher during January to June (6.90 /m2, with 55.7 

SD) than during the other months (0.40 /m2, with 6.61 SD). Number of surveys did not 

systematically vary among years (Table 1, Fig. 1). 

 

Spatial distribution: The surveys were conducted in the area from 131.5º–149.5º E and 

26.5º–42.5º N (Fig. 1). 
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Figure 1. The spatio-temporal distribution of the monthly egg surveys. The black 

rectangles indicate that the survey was conducted in that area in at least one month during 

the year. 
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Table 1. The summary of the survey (number of surveys, number of positive catches, and 

the nominal value of egg density) and the result of standardization (estimated abundance 

and log SD) for each year. 

 

Year 

Number of 

surveys 

(Grids x Months) 

Number of 

positive 

catches 

Mean 

catches 

Estimated 

abundance 

Estimated 

log SD 

2005 555 56 1.243 0.200 0.684 

2006 573 81 3.839 0.426 0.609 

2007 616 81 7.910 1.015 0.573 

2008 583 70 2.302 0.366 0.584 

2009 597 98 2.235 0.355 0.541 

2010 571 92 2.553 0.422 0.583 

2011 579 89 4.095 0.635 0.581 

2012 585 88 6.801 0.999 0.602 

2013 592 99 7.841 1.036 0.577 

2014 624 105 4.886 0.738 0.572 

2015 593 89 4.472 0.804 0.597 

2016 609 109 3.149 0.776 0.577 

2017 560 144 12.700 1.906 0.549 

2018 571 162 18.594 2.308 0.502 

2019 632 147 15.241 1.850 0.483 

2020 542 125 11.589 2.139 0.499 

2021 517 105 7.084 1.024 0.520 
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Figure 2. The spatio-temporal distribution of the egg density. For each grid (0.5º latitude 

* 0.5º longitude), egg density was averaged over the different months of the same year 

for the illustration purposes. 
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(3). Plots representing the correlation between the variables 

 

Here, we present the yearly trend of the proportion of positive catches and egg density in 

Figure 3. 

 

Figure 3. The yearly trend of the number of positive catches (left panel) and the egg 

density (right panel). Note that, in the right panel, y-axis is log-scale and only positive 

egg density is shown. 
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(4). Explanatory variables in the full model 

 

Following variables were included as the explanatory variables. 

Fixed effects: Year (categorical) 

Random effects: Spatial and spatio-temporal random factors 

 

(5). Model details 

 

We used the vector autoregressive spatio-temporal (VAST) model (Thorson 2019), which 

accounts for the spatio-temporal changes in survey design and observation rates and can 

accurately estimate relative local densities at high resolution. The model has been used 

for various objectives such as standardization of CPUE (e.g., Thorson et al. 2015) and 

distribution shifts (e.g., Thorson et al. 2016, Kanamori et al. 2019). 

The model includes two components, (i) the encounter probability 𝑝𝑦,𝑖 for year y 

at location i and (ii) the expected egg density 𝑑𝑦,𝑖 when spawning egg are encountered. 

Encounter probability 𝑝𝑦,𝑖 and positive density 𝑑𝑦,𝑖 are approximated using Gaussian 

random fields (a multidimensional generalization of Gaussian process): 

 

logit 𝑝𝑦,𝑖 = 𝛽𝑦
(𝑝) + 𝐿𝜔

(𝑝)𝜔𝑖 + 𝐿𝜀
(𝑝)𝜀𝑦,𝑖, 

log 𝑑𝑦,𝑖 = 𝛽𝑦
(𝑑) + 𝐿𝜔

(𝑑)𝜔𝑖 + 𝐿𝜀
(𝑑)𝜀𝑦,𝑖, 

 

where 𝛽𝑦s are the year specific intercepts, 𝐿𝜔s and 𝐿𝜀s are spatial and spatio-temporal 

random effects. More detailed information about this model was provided by Thorson 

(2019). 

After estimating the parameters using the VAST package in R, the index of 

abundance in year y at location i (i.e., local egg density), �̂�𝑦,𝑖, and the index of abundance 

in year y is (i.e., yearly egg density), �̂�𝑦, were obtained as: 

 

�̂�𝑦,𝑖 = logit−1[𝛽𝑦
(𝑝) + 𝐿𝜔

(𝑝)𝜔𝑖 + 𝐿𝜀
(𝑝)𝜀𝑦,𝑖] × exp[𝛽𝑦

(𝑑) + 𝐿𝜔
(𝑑)𝜔𝑖 + 𝐿𝜀

(𝑑)𝜀𝑦,𝑖], 

�̂�𝑦 = ∑ 𝑎𝑖

𝑖

�̂�𝑦,𝑖, 

 

where 𝑎𝑖 is area associated with location i. In this document, 𝑎𝑖 is fixed as 1 because 

the area of each location was equal. 

 The response variables in the positive density were assumed to follow a gamma 

distribution with log link. The gamma distribution was used because gamma models 
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generally obtained less biased and more robust estimates than lognormal models and, 

therefore, it is suggested to use a gamma distribution for index standardization (Cadigan 

and Myers 2001; Thorson et al., 2021). Spatial resolution (number of knots) for the spatio-

temporal variation was set as 100, 200, or 350 in the approximation of 𝜀𝑦,𝑖. These sets of 

model settings were submitted to model selection and the one with the lowest AIC was 

selected at the best model that was adopted in this document. 
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(6). Best model 

Based on AIC, we determined the model with gamma distribution (log link) and with 350 

knots as the best model (Fig. 4), after confirming the convergence of the optimization 

using the check_fit function. 

 

Figure 4. AIC values of the different model settings. 
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(7). Diagnostics of the model and the residuals 

There apparently were no systematic biases in the spatio-temporal distribution of 

standardized residuals that were obtained using the R package ‘DHARMa’ (Hartig 2022) 

(Fig. 5). 

 The parameter estimates were stable as the final gradients of all parameters were 

nearly zero (< 0.01). The prediction of encounter probability was diagnosed by 

investigating the area under the ROC (receiver operating characteristic) curve (AUC), 

which quantifies the performance of the classification model and ranges from 0 to 1 where 

0.5 suggests the random prediction and 1 suggests 100% correct prediction. Generally, 

0.8 to 0.9 AUC value is considered as a good prediction ability. The AUC was 0.93 (Fig. 

6), suggesting its good prediction. The Q-Q plots for the standardized residuals indicates 

that the distribution assumption is met (Fig. 7). 
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Figure 5. Spatio-temporal distribution of the residuals of the encounter probability 𝑝𝑦,𝑖 

(logit scale) and positive density 𝑑𝑦,𝑖. 
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Figure 6. Predicted and observed probability of the encounter probability 𝑝𝑦,𝑖. The red 

shared area represents the 95% CI of the prediction. 

 

 

 

Figure 7. Quantile-quantile plotthat compares the distribution of the observation and 

prediction of egg density. 
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(8). Estimated relationships between the explanatory variables and the response 

variable 

 

The explanatory variables in the model were only spatial and temporal ones and we did 

not incorporate other covariables. The spatial and temporal patterns of the response 

variable (predicted abundance) are shown in Fig. 8 in the next section. 

 

  



14 

 

(9). Yearly standardized CPUE and its uncertainty 

 

We present the spatio-temporal distribution of the predicted egg density (Fig.8). The 

uncertainty of the model (95% CI) is shown in the next section. 

 

Figure 8. Spatio-temporal distribution of the predicted egg abundance. 
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(10). Comparison of the nominal and standardized CPUEs 

The yearly patterns of index trends were similar between nominal and standardized 

CPUEs, and the inter-annual variability in standardized CPUE was smaller than nominal 

CPUE’s one (Fig. 9). Both indices indicate that SSB has increased since 2016 but peaked 

in 2018 and has been decreasing recently. 

 

Figure 9. The yearly patterns of scaled (divided by mean) nominal and standardized SSB 

indices. Blue area is 95% confidence interval of the standardized index. 
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