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ABSTRACT 

This working paper is an update to Canada’s proposed quantitative approach to identifying Vulnerable 
Marine Ecosystems (VMEs) described in NPFC-2021-SSC BFME-WP05 (Warawa et al. 2021). In this approach 
we use predictive habitat models to identify areas likely to be VMEs and visual data to identify VMEs, as 

outlined by the North Pacific Fisheries Commission (NPFC) framework for identifying data that can be used 
to identify VMEs in the NW and NE parts of the NPFC’s Convention Area (NPFC 2021). Our quantitative 
approach is based on work by Rowden et al. (2020) who identify thresholds related to the amount of VME 
indicator taxa in an area and how it contributes to an increase in associated species richness as a result of 
providing structural complexity. Canada’s proposed approach to identifying VMEs shows an example of an 
extension of the Rowden et al. (2020) approach to presence absence data and models. Our preliminary 
results from the Cobb-Eickelberg seamount chain study area detect a VME density threshold of 0.57 VME 
indicators taxa/m2 and a VME occurrence threshold of 0.78. Applying these thresholds to visual data and 
predictive habitat models result in a total area of 750m2 identified as VMEs on Cobb seamount and a total 
area of 1,542 km2 identified as likely to be VMEs along the Cobb-Eickelberg seamount chain, respectively. 

INTRODUCTION 

The United Nations General Assembly (UNGA) Resolution 61/105 calls on states to protect VMEs from 
destructive fishing practices. The Food and Agriculture Organization (FAO) published guidelines for the 
management of deep-sea fisheries in international waters, which outline five criteria of areas, habitats, or 
ecosystems that could be used to identify VMEs: (1) uniqueness or rarity, (2) functional significance of the 
habitat, (3) fragility, (4) life-history traits of component species that make recovery difficult, and (5) 
structural complexity (FAO 2009).  

Regional Fisheries Management Organizations (RFMOs) are encouraged to implement the FAO guidelines. In 
response, the North Pacific Fisheries Commission (NPFC) has developed a list of taxonomic groups accepted 
as VME indicator taxa, which include: (Alcyonacea (excluding Gorgonians), Antipatharia, Gorgonacea (now 
within the Alcyonacea), and Scleractinia) as VME indicator taxa (NPFC 2019, 2021a). Further, the NPFC has 
outlined a framework on data that can be used to use to identify VMEs and areas likely to be VMEs (NPFC 
2021b). Despite the FAO guidelines, and frameworks for identifying VMEs, there are few case-specific 
quantitative and repeatable definitions that have been used to identify VMEs both within the NPFC 
Convention Area (CA) or around the world. 
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Of the few case-specific examples of methods used to identifying VMEs, the methods and data are not 
generally applicable to the Northeastern part of the NPFC CA, in part because they rely on analysis of VME 
indicator incidental catch data. Many approaches to identifying VMEs rely on using qualitative information 
and expert judgement, which can be inconsistent and lack transparency (Morato et al. 2018). Morato et al. 
(2018) emphasize that it would be advantageous for analysts to develop robust and repeatable quantitative 
methods to identify VMEs. For example, Kenchington et al. (2014) used a kernel density estimation approach 
to analyze research trawl survey data and identified significant concentrations of VME indicator biomass as 
VMEs. This approach could not be applied to the Northeastern part of the NPFC CA because research surveys 
have not been undertaken there. There is also limited incidental catch of VME indicator taxa with the 
longline gears used by Canada to fish for Sablefish in the CA (no VME indicator taxa were found in the 
fisheries database as incidental catch for the Sablefish fisheries in the years 2006-2021). 

The steps outlined in Canada’s proposed approach describe a potential method to quantitatively identify 
VMEs and areas likely to be VMEs using the above guidance, criteria, and framework. This working paper is 
an update to Canada’s proposed approach to identifying Vulnerable Marine Ecosystems (VMEs) described in 
NPFC-2021-SSC BFME-WP05 (Warawa et al. 2021). The main updates in this revision include: 

• Ensemble modelling vs Maxent modelling for suitable habitat predictions of VME indicator taxa 

• Improved VME threshold modelling 

• Identification of VMEs using a density-based threshold in addition to identifying areas likely to be 
VMEs using an occurrence threshold  

Our objective is to outline Canada’s refined approach to identifying VMEs and areas likely to be VMEs and 
have this methodology endorsed as one approach that could be used to identify VMEs in the NPFC’s CA by 
the Scientific Committee. 

MATERIALS AND METHODS 

Study Area 

Our study area is the Cobb-Eickelberg seamount chain located in the eastern NPFC CA approximately 450 km 
offshore Vancouver Island, Canada (Figure 1). The chain is composed of eight named seamounts ranging in 
pinnacle depth of approximately 24 m (Cobb seamount) (Parker & Tunnicliffe 1994) to 1200 m (Hoh 
seamount) (Harris et al. 2014). The Canadian commercial Sablefish fishery has been active in the study area 
since the 1980s using mainly longline trap and some longline hook and line gear. Historically there are 
records of Japan using stern trawlers, bottom longline, and gillnet gear as early as the 1970’s, as well as the 
USA using bottom longline, pot traps and mid-water trawl gear from the 1980s until 2003 (Douglas, 2011). 
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Figure 1. Study area map of the Cobb-Eickelberg seamount chain in the NPFC CA. The inset shows the location 

of autonomous underwater vehicle (AUV) transects completed on Cobb Seamount in 2012 (see Curtis et al. 

2012).  

General approach to identifying VMEs and areas likely to be VMEs 

The main steps in our refined general approach are: 1) develop quantitative VME thresholds, 2) gather data 
on VME indicator taxa distribution, 3) apply the threshold to the data, 4) identify VMEs or areas likely to be 
VMEs. The data and criteria differ for identifying VMEs and areas likely to be VMEs (Figure 2). Identifying 
VMEs is based on applying a density VME threshold to visual data and any areas with visual data showing 
VME indicator taxa equal to or greater than the threshold are considered VMEs. Identifying areas that are 
likely to be VMEs is based on applying an occurrence VME threshold to predictive habitat models. Areas 
where at least one VME indicator taxon has habitat suitability predictions equal to or above the threshold is 
considered likely to be a VME. 
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Figures 2. Steps used to identify VMEs and areas likely to be VMEs. 

We use the four groups of corals recognized by NPFC as VME indicator taxa for identifying areas that are 
VMEs and likely to be VMEs in the NE part of the NPFC CA; the orders are Antipatharia (black corals), 
Scleractinia (stony corals), and Alcyonacea (soft corals and gorgonian corals). The NPFC recognizes gorgonian 
and soft corals as separate groups and they can be split into taxonomically valid groups using a family level of 
identification (see Miyamoto et al. 2017).  

Visual Data 

Visual data were collected from Cobb Seamount in 2012 (Curtis et al. 2015). Photos were taken using a 
SeaBED-class autonomous underwater vehicle (AUV) deployed by the National Oceanic and Atmospheric 
Administration (NOAA), capable of diving to 1,400 m. Curtis et al. (2015) describe the survey, including 
specifics of the submersible setups, cameras, deployments, and sampling design, and Du Preez et al. (2015) 
provide a photo-documented checklist of species observed at Cobb Seamount in 2012. We used the fully 
annotated dataset by NOAA which consisted of 2506 AUV photos taken from 4 transects with an average 
length of 1805 m ranging from 435 – 1154 m in depth. Transects were divided into area-standardized 
segments of 50 m2 for analysis. 

Predictive habitat models for VME indicator taxa 

In this update, we used a performance-weighted ensemble modeling approach instead of the Maxent 
approached used by Warawa et al. 2021). Ensemble modelling has been shown to improve model 
performance and interpretability (Araújo and New 2007). Three modeling techniques were used that have 
successfully predicted the distribution of cold-water corals in other studies (e.g. Rooper et al. 2017; Morato 
et al. 2020; Georgian et al. 2021): Boosted Regression Tree (BRT), Generalized Additive Models (GAM), and 
Random Forest (RF). Each model outputs a habitat suitability score between 0-1, with 1 indicating more 
suitable predicted habitat. The outputs of individual model approaches (BRT, GAM, and RF) were combined 
using the AUC weighted-average into a single ensemble model for each taxon. As each modeling approach 
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relies on differing underlying structures and distinct statistical assumptions,  they are therefore likely to 
produce dissimilar outputs and predictions (see Robert et al. 2016). Ensemble modeling can produce more 
robust predictions that are less reliant on model selection and parameterization (Araújo and New 2007). BRT, 
GAM, and RF models were built and tested using a combination of ‘biomod2’ (Thuiller et al. 2016), ‘gbm’ 
(Ridgeway 2004), ‘dismo’ (Hijmans et al. 2015), ‘mgcv’ (Wood 2006), and ‘randomForest’ (Liaw and Wierner 
2002) in R (v3.6.1; R Core Team 2019). BRT models were built using a minimum of 3,000 trees, an assumed 
Bernoulli distribution, and an interaction depth of 7 to prevent limiting interactions between terms. After 
testing a variety of model parameters during preliminary construction, GAMs were created using a binomial 
distribution and four degrees of freedom. RF models were constructed as classification models using 1001 
trees and a node size of five.  

Dependent data – The original dataset of georeferenced observations of NPFC’s VME indicator taxa in the NE 
Pacific Ocean from four data sources (see Warawa et al. 2021) was used in this update (Figure 3). 
Observations of presence from scientific data and museum collections were obtained from  the NOAA deep-
sea coral data portal (https://deepseacoraldata.noaa.gov/). Presence or absence of VME indicator taxa were 
also obtained from (1) standardized bottom trawl catch data from research surveys in the Gulf of Alaska, 
Aleutian Islands and eastern Bering Sea, (2) standardized bottom trawl catch data from DFO research surveys 
in British Columbia, Canada, and (3) standardized bottom trawl catch data from research surveys on the U.S. 
West Coast of Washington, Oregon and California (Stauffer 2004, Nottingham et al. 2018) 

Records were identified to various levels of taxonomy and updated to reflect current taxonomic relationships 
with the World Register of Marine Species (WoRMS, Horton et al. 2021). Records with at least an order (black 
corals, stony corals) or family (gorgonian corals, non-gorgonian soft corals) level of identification were 
pooled for use as the presence data for each of their respective predictive habitat models (PHMs). Final sets 
of presence records used for PHM model development were also spatially restricted to those occurring 
within the four marine ecoregions of the world (MEOW) that characterize the oceanographic conditions from 
the Gulf of Alaska to the West Coast of North America (Spalding et al. 2007). No commercial bycatch records 
were included in the data used for PHMs. Because the trawl surveys occurred only on the continental shelf 
and slope, most of the data are not from NPFC seamounts. All the absence records came from the 
continental shelf and a total of 42 presence records among the four NPFC indicator taxa groups were from 
offshore seamounts (4 black corals, 22 gorgonian, 16 non-gorgonian soft, zero stony). We prioritized keeping 
as many of these rare seamount observations in our models as possible and addressed this sampling bias by 
restricting the inclusion of offshore presence records to those occurring within the sampling depth range of 
the absence records, which sampled a maximum depth of 1600 m. 

 

https://deepseacoraldata.noaa.gov/
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Figure 3. Species presence and absence data used in PHM models. (a) Distribution of VME indicator taxa 

presence records and (b) Distribution of trawl absence data. Records were geographically limited to those 

occurring within four marine ecoregions and the adjacent international waters (Spalding et al. 2007). 

Seamount areas are from Harris et al. (2014). Note that the four groups of VME indicator taxa are plotted in 

panel (a) but are not visible because of the overlapping points. 

Independent data – We used a set of 30 environmental layers gridded at a 1 km2 resolution including 
bathymetry-derived terrain metrics, physiochemical variables, and oceanographic properties that are known 
to be strong predictors of benthic species distributions (see Table 1 in Annex 1 for a summary of details, 
native resolutions, and units associated with the environmental data layers). Terrain metrics included aspect 
(as eastness and northness), general curvature, cross-sectional curvature, longitudinal curvature, roughness, 
slope, Topographic Position Index (TPI), and Vector Ruggedness Measure (VRM). Water chemistry data were 
obtained as depth-binned variables from a variety of sources and interpolated to seafloor conditions using 
the approach in Davies and Guinotte (2011). Depth-binned carbon data were obtained from Steinacher et al. 
(2009), including total alkalinity, dissolved inorganic carbon, and the saturation states of aragonite and 
calcite. Seafloor salinity, dissolved oxygen, temperature, and nutrients (phosphate, nitrate, and silicate) were 
obtained from the World Ocean Atlas (Boyer et al. 2018). Particulate organic flux to the seafloor was 
obtained from Lutz et al. (2007), and regional and vertical current velocities were obtained from Carton et al. 
(2005). A suite of surface variables was obtained at a 4 km resolution and regridded to a 1 km resolution with 
no additional interpolation, including chlorophyll a, photosynthetically available radiation (PAR), sea surface 
temperature, particulate organic carbon, and particulate inorganic carbon. 

Variable Selection and Model Performance – As the inclusion of highly correlated variables can reduce model 
performance and interpretably (Huang et al. 2011), collinearity among predictors was addressed by 
examining variance inflation factors (VIF) and iteratively reducing the set of environmental data layers used 
for each model until the final subset of variables all had VIF < 10 (see Nephin et al. 2020 for using VIF < 10) 
(Table 1). A ten-fold cross validation procedure was used to assess model performance by randomly 
partitioning the presence and absence data into 30% testing data and 70% training data over ten model runs. 
Model performance was assessed via three standard metrics: Area Under the Curve (AUC), kappa, and the 
true skill statistic (TSS). AUC is the most commonly reported metric, with a score of 0.5 indicating model 
performance no better than random and scores closer to 1 indicating better model performance. Kappa 
compares the calculated model accuracy with the result expected by chance, with lower values indicating 
more random performance and higher values indicating better-than-expected performance. TSS is similar to 
kappa, but is independent of species prevalence (which is generally unknowable; Allouche et al. 2006). Final 
models used the entire set of species presences and absences from each taxon to generate maps of 
predicted suitable habitat. 

Table 1. Input occurrence and environmental data used in model construction: Number of 1 km2 gridded 

presence and absence records, and the subset of environmental data layers used as predictors. TPI is the 

Topographic Position Index at the corresponding scale in meters, PAR is the Photosynthetically Active 

Radiation, and SST is Sea Surface Temperature. Table 1 in Annex 1 provides details on the full set of 

environmental variables considered for use in PHM development. 

VME taxa Presence 
records 

Absence 
records 

Environmental variables included in final model 

Black corals 497 22,145 Chlorophyl-a, cross-sectional curvature, current angle, current aspect, 
current direction, east-facing aspect, north-facing aspect, oxygen, 
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PAR, particulate organic carbon, regional current velocity, slope, SST, 
TPI20000, vertical flow velocity, roughness 

Stony corals 291 22,145 

 

Omega Aragonite, Chlorophyl-a, cross-sectional curvature, current 
aspect, current direction, east-facing aspect, north-facing aspect, 
oxygen, PAR, particulate organic carbon, regional current velocity, 
slope, SST, TPI20000, roughness 

Gorgonian 
corals 

1,378 22,145 

 

Omega calcite, Chlorophyl-a, current direction, east-facing aspect, 
north-facing aspect, oxygen, PAR, particulate organic carbon, regional 
current velocity, slope, SST, TPI5000, TPI20000, roughness 

Non-
gorgonian soft 
corals 

611 22,145 

 

Omega calcite, Chlorophyl-a, cross-sectional curvature, current 
direction, current angle, east-facing aspect, north-facing aspect, 
oxygen, PAR, regional current velocity, slope, SST, TPI20000, 
roughness 

 

Quantitative VME threshold 

Our quantitative definition of a VME is based on the FAO VME criterion of structural complexity, where 
increasing structurally complex habitat has been shown to increase the richness of associated species. As 
associated richness increases, the number of species that can be supported is hypothesized to reach a 
threshold as niches become occupied, after which it plateaus (see discussion in Rowden et al. 2020). We use 
the density or occurrence of VME indicator taxa to quantify structural complexity and aim to identify how 
much structurally complex habitat corresponds to maximum associated species richness. Areas with VME 
indicator taxa at or above that threshold value will be considered a VME. Due to limited visual data available 
we combine the VME indicator taxa into a single threshold, but we recognize there may be taxa-specific 
thresholds.  

The VME threshold values based on density or occurence are calculated from the 2012 visual survey data 
from Cobb Seamount (see Curtis et al. 2015). For each transect segment, the associated species richness is 
calculated along with metrics representing the density or presence of VME taxa. We use two VME threshold 
metrics: 1) VME indicator taxa density measured as the number of individuals per meter, hereafter referred 
to as the “VME density threshold”, which is applied to visual data annotated with density values and used to 
identify VMEs, and 2) the proportion of transect segment with VME indicator taxa present, hereafter 
referred to as the “VME occurrence threshold”, which is applied to the VME indicator taxa PHMs and used to 
identify areas likely to be VMEs. The metrics are calculated as follows: 

VME density threshold = 
# of VME indicator taxa individuals per transect segment

Segment area (𝑚2)
 

VME occurrence threshold = 
# of images with VME indicator taxa per transect segment

# of images per transect segment
 

To identify the breakpoint, or threshold, for each VME threshold metric we used piecewise linear regression 
models built using the segmented() R package (Muggeo 2008). The model variables were selected using a 
backward stepwise selection method and the final model was identified based on AIC value.  
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RESULTS AND DISCUSSION 

Predictive habitat models for VME indicator taxa  

BRT, GAM, and RF models developed using presence-absence data performed well with test AUC scores 
ranging from 0.795–0.898, kappa of 0.138–0.501, and TSS of 0.489–0.656 among all taxa (Table 2). The most 
important predictors varied among taxa and modeling approaches, with dissolved oxygen, chlorophyll a, 
roughness, aspect, slope, TPI-20000, PAR, and the saturation state of calcite generally contributing 
significantly to models (Table 3). Model predictions varied both among taxa and modeling approach (Figure 
4). However, shared areas of high habitat suitability in the final ensemble models were generally 
concentrated along the continental shelf in domestic waters and mostly at seamount areas within the 
international waters of the NPFC CA (Figure 4). These results mirror those of Chu et al. (2019) who used a 
similar PHM approach on a subset of the same presence and absence data. The complimentary findings 
reinforce the importance of the expansive oxygen minimum zone in the Northeast Pacific Ocean and its 
influence on the distribution of VME indicator taxa in this region.  

Table 2. Model evaluation of testing data as assessed via a ten-fold cross validation procedure.  

Taxa Model TSS ROC Kappa 

Black RF 0.489±0.038 0.807±0.020 0.138±0.018 
 BRT 0.592±0.027 0.858±0.020 0.227±0.021 
 GAM 0.596±0.037 0.863±0.015 0.231±0.023 

Stony RF 0.537±0.056 0.797±0.031 0.439±0.053 
 BRT 0.541±0.048 0.869±0.019 0.452±0.056 
 GAM 0.530±0.034 0.842±0.019 0.408±0.057 

Gorgonian RF 0.550±0.018 0.852±0.006 0.413±0.017 
 BRT 0.558±0.021 0.861±0.008 0.429±0.018 
 GAM 0.521±0.016 0.834±0.008 0.353±0.015 

Soft RF 0.544±0.036 0.795±0.021 0.494±0.040 
 BRT 0.656±0.030 0.898±0.015 0.501±0.035 
 GAM 0.596±0.026 0.886±0.012 0.474±0.029 

Table 3. Summary of final model parameters. AUC of the ensemble model and the top three most important 

predictor variables based on their relative importance in each model are presented (given as the average 

importance across BRT, GAM, and RF models). Variable acronyms: PAR – photosynthetically active radiation, 

POC – particulate organic carbon, TPI-20000 – topographic position index at a 20,000 m scale, SST – Sea 

Surface Temperature. The full ranked list of variable importance is provided in Table 2 of Annex 1. 

VME group Ensemble 
AUC 

1st ranked 2nd ranked 3rd ranked 

Black corals 0.898 Dissolved Oxygen 
(28.9%) 

PAR (21.4%) POC (9.5%) 

Stony corals 0.917 SST (28.0%) Regional current flow 
(19.7%) 

Roughness 
(14.8%) 
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Gorgonian 
corals 

0.880 Eastness (26.4) Slope (22.2) Chlorophyll a 
(9.2%) 

Non-gorgonian 
soft corals 

0.918 Roughness (26.0%) Chlorophyll a (19.1%) TPI-20000 (13.6%) 

 

Figure 4. Ensemble model predictions of habitat suitability index (HSI) for the four NPFC VME indicator taxa in 

the NE Pacific Ocean. The high habitat suitability areas in the northeast part of the NPFC’s CA (Canada’s EEZ 

boundary indicated by a line) occur at seamounts. Model predictions have been restricted to the maximum 

depth of 1,600 m.  

Identifying areas that are likely to be VMEs using PHMs will be strongly influenced by the taxa being 
modelled. Although our PHM models performed well, the NPFC’s VME indicator taxa groups (black corals, 
stony corals, gorgonians and non-gorgonian soft corals) are taxonomically broad and capture a wider range 
of habitat conditions than what species-specific PHMs would resolve. Ideally, we would develop PHMs for 
taxa at lower taxonomic levels (e.g., species or family) which could reduce the amount of species-specific 
habitat requirements being pooled into a single model. This could improve how well our PHMs predict the 
occurrence of VME indicator taxa. 
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VME visual thresholds 

Visual threshold metrics of occurrence and density of VME indicator taxa was calculated for n = 221 50 m2 
divisions of the AUV transects on Cobb Seamount. All four VME indicator taxa were represented in the AUV 
data, with black and gorgonian coral being the most abundant (see Table 1 in Annex 2 for a list of observed 
taxa).  

Associated species richness ranged from 1 to 16 per segment of the AUV transects with a mean of 7.5. A 
general comparison of model fit showed the piecewise regression fit the data better than a linear regression 
which indicates a threshold relationship occurring in our data. In addition, Davies’ test from the segmented() 
R package detected a non-zero difference in the slope of the response variables, further indicating a break 
point in the data. 

The VME density ranged from 0 to 1.14 individuals/m2 per 50 m2 segments of AUV transect. The best model 
to predict species richness based on VME density was a segmented linear model using VME density, depth, 
and transect as predictor variables. This model resulted in a threshold of 0.57 individuals/m2 (95% CI = 0.17, 
adjR2 = 0.35) (Figure 5a). In comparison, Rowden et al. (2020) identified an average threshold of 0.11 for the 
number of coral heads per m2 at the same spatial scale. 

The proportion of 50 m2 AUV transects where VME taxa occurred ranged from 0 to 1, where 1 indicated that 
all images for that transect segment contained at least one VME indicator taxon (Figure 5b). The best model 
to predict species richness using visual occurrence values was a segmented linear model using occurrence of 
VME and transect as predictors . This model resulted in a threshold where the proportion of transect with 
one or more VME indicator taxa occurring is 0.78 (95% CI = 0.13, adjR2 = 0.35) (Figure 5b). 

Figure 5. Associated species richness plotted as a function of the density (a) or occurrence (b) of VME 

indicator taxa. Piecewise regressions indicate the location of the  a) visual density threshold and b) visual 

occurrence threshold. The black square along bottom indicates the threshold breakpoint and the 

accompanying line represents the 95% CI of the breakpoint. Shading indicates 95%CI for the piecewise 

models.  

a)                                                                          b) 
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Areas that are VMEs and likely to be VMEs 

VMEs were identified on three out of the four AUV transects on Cobb seamount. 6.7% of transect segments 
had density values above the VME density threshold of 0.56 individuals/m2. This resulted in 15 out of the 221 
50 m2 areas identified as VMEs ranging in depth from approximately 500 m to 1150 m (Figure 6). Only a total 
of 0.01 km² of Cobb Seamount has been assessed for VMEs using visual data, of which 0.00075 km2 was 
identified as such in this study. 

 

Figure 6. Areas that are identified as VMEs (15 50 m2 transect segments) based on visual data that meets or 

exceeds the density threshold of 0.57 individuals/m2. Black lines are four AUV visual surveys from 2012 Cobb 

Seamount expedition. 

Areas identified as likely to be VMEs in our study area resulted in a total area of 1,542 km2 ranging in depths 
from 30 m to 1600 m (Figure 7). Gorgonian coral and black coral had the highest frequency of predictions 
above the VME occurrence threshold of 0.78, which had maximum predictions of 0.95 and 0.93 respectively. 
Stony corals had the lowest overall predictions with a maximum of 0.79. Therefore, the resulting spatial 
distribution of areas likely to be VMEs is largely driven by the prediction of suitable habitat for gorgonian 
corals (Figure 8). 
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Figure 7. Areas identified as likely to be VMEs (blue) where at least one VME indicator taxon predicted model 

value meets or exceeds the VME occurrence threshold of 0.78. Seamount boundaries are from Harris et al. 

(2014). 

 

Figure 8. Frequency distribution of Habitat Suitability Index (HSI) values for each VME indicator taxon in 

relation to the VME occurrence threshold of 0.78 (blue line). Areas with at least one VME indicator taxon HSI 

above the threshold were identified as likely to be VMEs. 
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VME indicator taxa density and occurrence values are significantly and positively correlated (Spearman's rank 
correlation rho (rs) = 0.97, p < 0.05) (Figure 9). For comparison purposes, if we apply the VME occurrence 
threshold of 0.78 to the transect segments where VMEs were identified with the VME density threshold, 87% 
of the same segments are identified. Nevertheless, the VME occurrence threshold identified more segments 
than the VME density threshold (24 vs 15 segments identified, respectfully) (Figure 10). The correlation 
between VMEs and areas likely to be VMEs  on the AUV transects show that high habitat suitability 
predictions represented by a VME visual occurrence threshold can be a good proxy for VME density. 

 

Figure 9. Spearman’s correlation between VME indicator taxa density and VME occurrence per transect 

segment at the 50 m2 segment scale.  

 

Figure 10. Comparison of the VME occurrence threshold (right y axis, green dashed line) vs the VME density 

threshold (left y axis, blue dashed line) when applied to the visual data from Cobb Seamount AUV transect 4. 

The blue solid line represents the VME density and the green solid line represents the VME occurrence 

proportion for each 50 m2 transect segment.  
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Our general application of PHMs can be used to assess all seamounts in the NPFC’s CA to preliminarily 
identify areas that are likely to be VMEs. Targeted visual surveys can then be used to ground truth high 
priority areas identified in the PHMs to confirm VME areas. 
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ANNEX 1 – PHM ENSEMBLE MODELLING 

Table 1. Overview of environmental data used or considered for use in model construction. 

Variable name Abbreviation Units 
Native 
Resolution 

Reference 

Bathymetry 
 

bathy meters 0.0083° 
 

Becker et al. 2009 
Sandwell et al. 2014 

Terrain Variables     
Aspect – Eastness eastness  0.0083° Jenness 2013a 
Aspect – Northness northness  0.0083° Jenness 2013a 
Curvature – General gencurve  0.0083° Jenness 2013a 
Curvature – Cross-Sectional crosscurve  0.0083° Jenness 2013a 
Curvature – Longitudinal longcurve  0.0083° Jenness 2013a 

Roughness roughness  0.0083° Jenness 2013a 
Slope slope Degrees 0.0083° Jenness 2013a 
Topographic Position Index TPI  0.0083° Jenness 2013b 
Vector Ruggedness Measure VRM  0.0083° Walbridge et al. 2018 
     
Benthic Variables     
Alkalinity alk_stein μmol l-1 3.6x0.8-1.8° Steinacher et al. (2009) 
Dissolved inorganic carbon dic_stein μmol l-1 3.6x0.8-1.8° Steinacher et al. (2009) 
Omega aragonite (ΩARAG) arag_stein  3.6x0.8-1.8° Steinacher et al. (2009) 
Omega calcite (ΩCALC) calc_stein  3.6x0.8-1.8° Steinacher et al. (2009) 
Dissolved oxygen dissox μmol l-1 1° Garcia et al. 2018a 
Salinity salinity  0.25° Zweng et al. 2018 
Temperature temp °C 0.25° Locarnini et al. 2018 
Phosphate phosphate μmol l-1 1° Garcia et al. 2018b 
Silicate silicate μmol l-1 1° Garcia et al. 2018b 
Nitrate nitrate μmol l-1 1° Garcia et al. 2018b 
Particulate organic carbon POC g C m-2 yr-1 0.05° Lutz et al. (2007) 

Regional current velocity regfl m s-1 0.5° Carton et al. (2005) 
Vertical current velocity vertfl m s-1 0.5° Carton et al. (2005) 
Regional Currents and Aspect curaspect  0.5° Derived 
     
Surface Variables     
Chlorophyll a chla mg m-3 4 km NASA (2021) 
Photosynthetically Available 

Radiation 
PAR Einstein m-2 

day-1 
4 km NASA (2021) 

Sea Surface Temperature SST °C 4 km NASA (2021) 
Particulate organic carbon POC_S mg m-3 4 km NASA (2021) 
Particulate inorganic carbon PIC_S mg m-3 4 km NASA (2021) 

 

Table 2. Percent variable importance for Boosted Regression Tree (BRT), Random Forest (RF), and 

Generalized Additive Models (GAM). Aragonite saturation state (ΩARAG) was used for stony coral models, and 

calcite saturation state (ΩCALC) was used for soft coral, gorgonian, and black coral models.  

Taxa Model ΩARAG/CALC Cur-
Aspect 

Diss. 
Oxygen 

Slope Bottom 
Temp. 

TPI-
1000 

TPI-
20000 
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Stony corals BRT 3.3 1.0 2.7 30.7 20.6 8.7 33.0 
 GAM 1.4 2.7 11.8 38.3 3.7 9.2 32.9 
 RF 10.3 3.9 21.1 17.4 21.7 6.1 19.4 

Soft corals BRT 1.1 0.0 1.1 65.7 3.1 7.5 21.4 
 GAM 12.0 1.3 17.9 27.4 18.4 5.6 17.3 
 RF 23.8 0.0 0.8 17.4 4.0 5.6 48.3 

Gorgonians BRT 25.1 0.0 7.1 6.6 2.6 1.6 57.0 
 GAM 20.2 0.4 14.1 5.2 41.4 0.8 17.9 
 RF 5.2 0.0 1.2 14.8 2.0 3.3 73.4 

Black corals BRT 5.5 0.1 14.8 1.0 60.6 4.0 13.9 
 GAM 10.3 0.4 22.5 0.4 46.4 2.7 17.3 
 RF 23.0 3.1 16.1 9.7 35.6 6.2 6.4 

 

 

Figure 1. Pearson’s correlations among all environmental variables considered for inclusion in models. 
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Figure 2. Cluster diagram demonstrating the relationships among all environmental variables considered for 

inclusion in models. Preliminary Random Forest models were constructed, and a combination of 1) initial 

model performance, 2) known biological relevance, and 3) relationships among variables were used to select 

a smaller group of high performing, less-correlated variables for the final models. 
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Figure 3. ROC-weighted ensemble model for stony corals in the vicinity of Cobb Seamount.  

 

Figure 4. ROC-weighted ensemble model for black corals in the vicinity of Cobb Seamount.  
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Figure 5. ROC-weighted ensemble model for soft corals in the vicinity of Cobb Seamount.  

 

 

Figure 6. ROC-weighted ensemble model for gorgonians in the vicinity of Cobb Seamount.  
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ANNEX 2 – TAXA OBSERVED ON COBB SEAMOUNT AUV TRANSECTS IN 2012 

Table 1. Species list and counts from AUV photo data from Cobb seamount (2012) grouped by VME indicator 

taxa 

VME indicator taxa group Morphotype name Count VME indicator taxa group count 

Black Coral Bathypathes sp 373 715 

Lillipathes sp 281 

Stichopathes sp 61 

Gorgonian Isididae 570 787 

Primnoidae 188 

Swiftia simplex 29 

Soft Coral Non Gorgonian Gersemia sp 40 285 

Heteropolypus ritteri 245 

Stony Coral Desmophyllum dianthus 8 8 

Associated non VME 
indicator taxa 

Actinostola faeculenta 302 5695 

Ampheraster marianus 29 

Anoplopoma fimbria 2 

Anthoptilum sp 91 

Antimora microlepis 4 

Brisingidae sp 57 

Chionoecetes tanneri 179 

Chirostylidae 1532 

Chorilia longipes 11 

Coryphaenoides acrolepis 69 

Embassichthys bathybius 17 

Euretidae 27 

Farrea omniclavata 39 

Florometra serratissima 24 

Glyptocephalus zachirus 2 

Halipteris willemoesi 2 

Hippasteria phrygiana 14 

Hormathiidae 34 

Liponema brevicornis 4 

Lithodes couesi 17 

Microstomus pacificus 1 

Molpadia intermedia 1 

Octopus sp 2 

Pannychia mosleyi 1013 

Pseudarchaster 38 

Psolus squamatus 240 

Pteraster sp 7 

Rathbunaster californicus 7 
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Rossellidae - Sp 1 66 

Rossellidae - Sp 2 62 

Scyliorhinidae 5 

Sebastes sp 9 

Sebastolobus alascanus 6 

Sebastolobus sp 544 

Staurocalyptus sp 8 

Stylaster sp 14 

Thrissacanthias sp 4 

Tritoniidae 6 

Umbellula lindahli 1 

Unidentified anemone 291 

Unidentified coral 298 

Unidentified Crab 4 

Unidentified fish 34 

Unidentified invertebrate 26 

Unidentified sea cucumber 3 

Unidentified sea pen 35 

Unidentified sea star 340 

Unidentified sponge 174 

 


