Joint work on life history based approach to stock assessment

Growth curve for Splendid alfonsino (SA)

Lead by Korea September 27, 2023

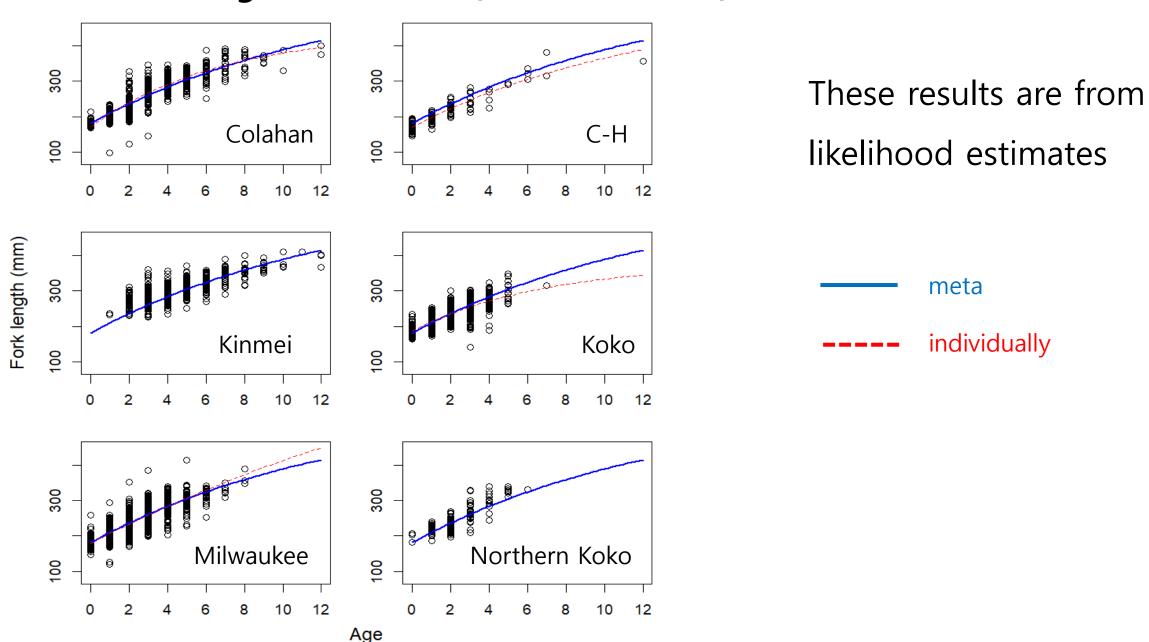
Summary of previous results

- We plotted growth curves (LVB) using the Likelihood function on the TMB.
- The female showed a higher maximum growth (L_∞) than the male.
- The growth curve exhibited varying patterns for each seamount, with the maximum size ranging from 35cm in Koko to over 1m in Milwaukee.
- * The rankings of growth performance: Milwaukee, Northern Koko, Colahan, C-H, Koko, and Kinmei.
- Members suggested Korea ① analyze the effect of gear selectivity on the analyses and ② try to use mixed modelling and treat seamounts as random.

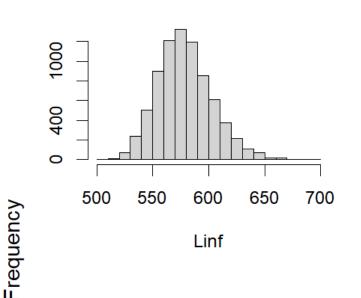
When considering the effect of gear selectivity

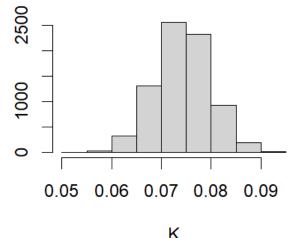
It seems unnecessary to consider the effect of gear selectivity on the analyses. What our group ultimately wants to do is find a growth equation using "age-length (or weight)" pair data. In other words, using data collected from multiple fishing gears (each pair of length (or weight) corresponding to age) at the same time solves this concern.

This idea is comparable to a meta-analysis where we estimate LVB parameters synthesizing location-specific data.


Posterior probability of the LVB parameters

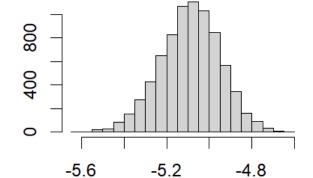
$$\begin{aligned} & \boldsymbol{\theta} = (\text{Linf}, K, \text{t0}) \\ & D_i = \text{data on pairs of age and length from sea mount } i \\ & (i: \text{Colahan, C-H, Kinmei, Koko, Milwaukee, Northern Koko}) \\ & p(\boldsymbol{\theta} \mid D_1, D_2, D_3, D_4, D_5, D_6) \\ & \propto p(D_1, D_2, D_3, D_4, D_5, D_6 \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}) \\ & = p(D_1 \mid \boldsymbol{\theta}) \cdot p(D_2 \mid \boldsymbol{\theta}) \cdot p(D_3 \mid \boldsymbol{\theta}) \cdot p(D_4 \mid \boldsymbol{\theta}) \cdot p(D_5 \mid \boldsymbol{\theta}) \cdot p(D_6 \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}) \end{aligned}$$


Estimation with the additive error assumption (i.e., length ~ normal) outperformed that with the multiplicative error assumption (i.e., length ~ lognormal) in terms of the convergence of the numerical optimization and AIC.

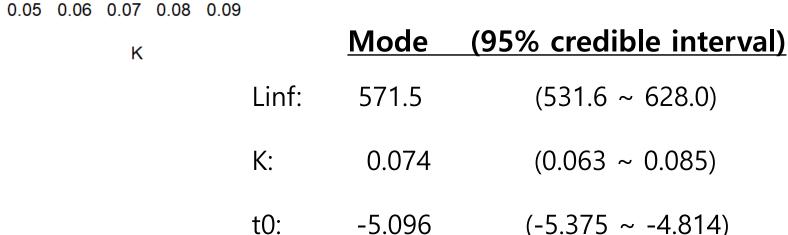

Likelihood estimation in case of the additive error assumption

```
Estimate Std. Error logLinf 6.35457868 0.040787156  
logK -2.59383302 0.073356817  
t0 -5.07436456 0.139914219  
Linf 575.11997859 23.457508397  
K 0.07473304 0.005482178  
t0 -5.07436456 0.139914219
```


Posterior distribution in case of the additive error assumption



These results are from Bayesian posterior inference.


 $(531.6 \sim 628.0)$

 $(0.063 \sim 0.085)$

 $(-5.375 \sim -4.814)$

t0

Summary

- The gear selectivity effects were not considered on our analyses because we can find a growth equation for SA using data collected from multiple fishing gears at the same time.
- Posterior probabilities of the LVB parameters were estimated to treat the location (i.e. seamounts) as random effects.
- The growth curves make more sense when seamounts are treated as a random effect than when they are not.