Domestic Stock Assessment of Japanese Sardine in Japan

Shota Nishijima
(Japan Fisheries Research and Education Agency)

Spatial Structure of JS Stocks

Tsushima Warm Current stock

- There are two stocks depending on distributions and biology
- Only the Pacific stock is distributed in the NPFC Convention Area

Distribution and Migration

Age 1+ fish

Spawning grounds

Peak: Feb to Apr

Summer \& Autumn

Northward to feeding grounds

Fished by large-scale purse seine, mid-scale purse seine, set net, and other fisheries on many coastal areas

Biological Characteristics

Sardinops melanostictus

- The Longevity is about 7 YO
- The maximum body length is $22-24 \mathrm{~cm}$

Maturity by age

- Begin to mature from age 1
- The maturity rate at age 1 depends on the abundance level
- Almost all fish at age 2 mature

Distribution and Migration

Age 0 fish

2 migration patterns

Spawning grounds

 Peak: Feb to AprFished after the offshore migration and body growth

Stay on the coast and fished from whitebait and young fish Coastal group

Stable over years

Catch Statistic

- Catch weights by Japan were taken from the national official statistic
- Data in Japan were originally collected from 18 coastal prefectures by month by gear
- Catch weights by China and Russia were taken from the NPFC statistics

Length, Weight and Age Data

- Measurement data are collected from all 18 prefectures
- Data are treated by month and by fishing gear
- Age is estimated by otolith or scale reading

Catch at Age and Weight at Age in Japan

- Catch at size is derived from length frequency and L-W relationship
- ALK is applied to derive catch at age
- Weight at age is estimated from catch at age (weight)/catch at age (num)

Age composition for foreign catch was assumed to be identical to that of the purse seine fishery in north of Miyagi pref. from Jul. to Dec.

Catch at age

- Wide age classes were caught recently
- Catch of old fish has been increasing

Abundance indices for recruitment and age 1

Dec.-Apr. Large-scale purse seine Index for the immature (Age 1)

Sep.-Oct.
Autumn survey for small pelagic fish Recruitment index (from echo sounder)

Jun.-Jul.

Summer survey for small pelagic fish
Recruitment index (from mid-water trawl)

May-Jun.
Spring Survey for juvenille and young fish Recruitment index (from mid-water trawl)

Trends of the Abundance indices

- Spring survey index (Not used in VPA)
-„- Summer survey index (Not used in VPA)
-ะ- Autumn survey index (Used in VPA)
\ldots Winter fisherydependent index (Used in VPA)

High values are frequently shown in recent years

Egg and larval survey

- The Egg and Larval survey is conducted by 19 prefectural fisheries institutes and FRA in every month along the Pacific coast of Japan using NORPAC net
- Number of samples per year is c.a. 5 thousands

Egg abundance as an SSB index

High values in recent years especially in the eastern area

Tuned VPA

Age classes: $0 \sim 5+$
Natural mortality: M = 0.4
from Tanaka's equation: M = 2.5/maximum age (Tanaka 1960)
2.5/7 = $0.357 \approx 0.4$

Use the Pope's approximation
Assume $F_{4, y}=F_{5+, y}$
Estimate nonlinear coefficients for the recruitment and age 1 indices

Ridge VPA (Okamura et al. 2017, ICES JMS)

$(1-\lambda) \sum_{k=1}^{3} \sum_{y}\left[\ln \left(I_{k, y}\right)-\ln \left(q_{k} X_{k, y}^{b_{k}}\right)\right]^{2}+\lambda \sum_{a=0}^{4} F_{a, 2022}^{2}$
Select λ so that a retrospective bias is minimized

Pose a penalty for squared F to avoid divergence of F
$I_{k, y}$: Index values
$X_{k, y}$: Corresponding abundance estimate (SSB, N at age 0 , or N at age 1)
q_{k} : Proportional constant
b_{k} : Nonlinear coefficient

Impossible to reduced retrospective bias for both R and SSB (trade-off)

Mohn's rho for SSB

Extended Ridge VPA

$$
\begin{aligned}
& (1-\lambda) \sum_{k=1}^{3} \sum_{y}\left[\begin{array}{l}
\text { Residual sum of square } \\
\left.\ln \left(I_{k, y}\right)-\ln \left(q_{k} X_{k, y}^{b_{k}}\right)\right]^{2}+\lambda\left[(1-\eta) \sum_{a=1}^{4} F_{a, 2022}^{2}+\eta F_{0,2022}^{2}\right]
\end{array}\right. \\
& \text { Pose different penalties between } \\
& \text { age } 0 \text { and older } \\
& \mathrm{F} \text { at age } 0 \text { was estimated at a small } \\
& \text { value } \\
& \text { The 'usual' penalty in the ridge VPA } \\
& \text { did not work on age } 0 \\
& \text { Mohn's rho for SSB }
\end{aligned}
$$

Relationships between index and abundance

Autumn survey for age $0 \quad$ Fishery-dependent index for age 1

$q=35.8 \quad b=0.70$

Egg abundance for SSB

$$
\mathrm{q}=0.46 \quad \mathrm{~b}=1.00 \text { (fixed) }
$$

Showed the tendency of hyperstability maybe because of fishery-dependent index

Residual plot as a model diagnostic

Retrospective analysis as a model diagnosti

Biomass and Exploitation Rate

Total biomass increased since 2010 and SSB increased since 2022
Remained flat since 2020 (Biomass in 2022: 4910,000 mt, SSB in 2022: 2410,000 mt)
Catch rate declined in the late 2000s and remained low in the 2010s However, it has increased from 2020 to 2022

Recruitment and RPS

A high value of RPS increased recruitment in 2010
The increase in SSB and moderate RPS caused high recruitments since 2011
Especially high recruitments since 2018

Fishing Mortality by Age

F at age 0 has been stable in recent years
F at old ages has been increasing

Fishing Mortality (\%SPR)

\%SPR : Ratio of SPR (SSB/R) without fishing to SPR with fishing

Fishing pressure increased along with the decline in abundance in early 1990s and early 2000s

Fishing pressure in 2020-2022 is maintained at low levels ($\approx 30 \%$ SPR $)$

Stock-Recruitment Relationship

- Post-hoc estimation of the hockey-stick (HS) relationship from VPA outputs
- Separate regimes between 1987 and 1988

—— Estimate in 2023 stock assessment

Estimate at the benchmark stock assessment (2020)

High recruitment in recent years
But slow increase in SSB (probably due to decline in weights)

Why using the regime-based HS relationship?

Sardine is well known to exhibit large resource fluctuations in synchronization with multi-decadal global climatic oscillation
The pacific stock of JS shifted from high-recruitment to normal-recruitment regime in 1988 (Yatsu et al. 2005; Takahashi et al. 2009; Kurota et al. 2020)

No-regime model

Function	Optimization		Autocorrelation	a	b	S.D.	ρ	AICc	BIC
Hockey-stick	Least square		Yes	0.034	1,629,150	0.76	0.60	108.3	114.3
Ricker	Least square		Yes	0.032	1.52e-07	0.78	0.55	109.5	115.5
Beverton-Holt	Least square		Yes	0.040	$5.00 \mathrm{e}-07$	0.77	0.60	109.1	115.1
With-regime unction	Optimization	Regime	a		b	S.D.	p	AICc	BIC
modelHockey- Stick	Least square	Normal High	$\begin{aligned} & 0.026 \\ & 0.036 \end{aligned}$		$\begin{gathered} \hline 764,253 \mathrm{Min} \\ 5,612,636 \\ \hline \end{gathered}$	um A 0.40	\& BIC	96.0	104.3
Ricker	Least square	Normal High	0.027 0.052		$\begin{aligned} & \hline 2.73 \mathrm{e}-07 \\ & 9.68 \mathrm{e}-08 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.44 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	99.0	107.3
BevertonHolt	Least square	Normal High	$\begin{aligned} & 0.036 \\ & 0.064 \end{aligned}$		$\begin{aligned} & 1.54 \mathrm{e}-06 \\ & 2.23 \mathrm{e}-07 \end{aligned}$	$\begin{aligned} & \hline 0.73 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	96.9	105.1

Why assuming the normal regime for recent years despite high recruitment?

- Recent estimates in recruitment are highly uncertain
- By a simple management strategy evaluation (MSE), it was confirmed that a normal-regime based harvest control rule (HCR) showed similar performance of no-regime based HCR when regimes were assumed not to exist

True: No regime

- No-regime based HCR
- Normal-regime based HCR
- By the simple MSE, it was also confirmed that when the current regime was assumed to be actually high, the normal-regime HCR would be able to catch JS sufficiently

Kobe plot

Zoom-in

- MSY reference points were estimated by a stochastic simulation with a random recruitment variability from the normal-regime SR relationship (see Ichinokawa et al. 2017, ICES JMS, for details)
- SSB in 2022 exceeded SSBmsy
- Fin 2022 exceeded Fmsy

Summary

- Japan conducts the JS stock assessment by the tuned VPA with ridge penalty
- The MSY-based reference points were estimated from the stochastic simulation from the normal-regime SR relationship of the hockey stick function
- In 2022, estimated total biomass was 4.91 million ton and SSB was 2.41 million ton
- It exceeded SSBmsy (1.19 million ton)
- The current F (F2020-2022) exceeded Fmsy

Future Issues

- It is necessary to reflect actual age composition in the outside of Japanese EEZ
- Should consider more how to treat regimes for future projection and BRP
- Should conduct CPUE standardization

