Domestic stock assessment of Japanese flying squid in Japan

Population structure

Distribution and spawning ground by each stock

Seasonal migration route by each stock

The winter and the autumn spawning stocks are dominant The stock assessment has been conducted to each stock JFS caught in the NPFC Convention Area is the winter spawning stock

Migration and Seasonal change of fishing grounds

Winter to Spring

Paralarvae are transported to the Pacific Ocean by the Kuroshio Current

Summer to Autumn

Migrating northward to feeding grounds

Late Autumn to Winter

Migrating southward to spawning grounds through Sea of Japan

- Fished by jigging, set net, bottom trawl, purse seine
- Catch by Japan and Korea in the Sea of Japan from late autumn to spring was considered as the winter spawning stock

Biological information

Squid sampling

- Squid samples were collected by local fisheries research bodies and local fisheries associations at major ports on the Pacific side
- Samples were measured in the laboratory

Squid measurement

- Mantle length, body wight, reproductive organ (3000-15000 individuals/year)
- Maturity classification
- Age determination (500-1200 individuals/year)

Survey

- Winter survey for paralarvae by Bongo net
- Recruitment survey by midwater trawl and jigging

Japanese survey of the winter spawning stock JFS

Biomass estimation method

Paralarvae

Standardized CPUE from the coastal squid jigging fisheries

C, 吅,
:

$$
N_{t}=q U t
$$

Squid catch of year $\left(C_{t}\right)$
$F_{t}=-\ln \left(1-\frac{C_{t} \cdot \exp ^{\frac{\mathrm{M}}{2}}}{\mathrm{q} U_{t}}\right)$

$$
s_{t}=\left(N_{t} \cdot \exp ^{-\frac{\mathrm{M}}{2}}-C_{t}\right) \cdot \exp ^{-\frac{\mathrm{M}}{2}}
$$

Reproduction

Direct estimation
 N_{t} : Biomass in number q : proportional constant

Fishing mortality $\left(F_{t}\right)$
Natural mortality (M, 0.1/month)
Spawning stock biomass $\left(S_{t}\right)$

Biomass in number $\left(N_{t}\right)$ was estimated from the abundance index $\left(U_{t}\right)$

Input data

Duration of the stock assessment

- 1979 to 2022 (Fishing year: April-March)

Catch data used for the estimation

- Catch by China and Russia are taken from the NPFC statistics
- Catch by Japan and Korea are taken from the official statistics
- CPUE from coastal squid jigging fisheries as abundance index

Estimation method:

- Standardization of abundance index (Okamoto et al. 2016)
- Estimation of q
- Natural mortality (M) : 0.1/month and 0.6 as 6 months of fishing season (July to December)
- Fishing mortality (F) and spawning stock biomass (SSB) estimated through Pope's equation
- The Hockey stick model, Ricker model and Beverton-Holt model were compared as the stock-recruitment relationship

Time series of catch of the winter spawning stock

Standardization of the abundance index (Okamoto et al. 2016)

Data set: Monthly catch and number of boats collected from sales slips data
Fishing season: July to December
Fishing method: Jigging (Coastal squid jigging fisheries account for 31~98\% of JFS catch by Japan in the Pacific)
Fishing ground: Coastal waters off the northeastern part of Japan on the Pacific side

Statistical model: GLMM

Explanatory variables: Year, Month, Port and those interaction terms
Model selection: BIC was used to select the model

$$
\begin{gathered}
\log (\text { CPUE }+\delta)=\text { Intercept }+ \text { Year }+ \text { Month } \\
+ \text { Port }+ \text { Year } * \text { Port }+ \text { Month } * \text { Port }
\end{gathered}
$$

δ is constant.
All explanatory variables were categorical Interactions with Port worked as mixed effect

Calculation of q

Assumption

पMean exploitation rate $\left(C_{t} / N_{t}\right)$ for 1979-2001 $=0.3$
Rationale
The exploitation rates of the autumn spawning stock in the Sea of Japan were estimated to be ranged between 0.2 to 0.4 (JSNFRI 1997; 1998)
Kidokoro et al. (2006) estimated this rate to be approx. 0.3 for 1979-2001
The exploitation rates for the winter spawning stock were estimated to be at the same level (0.3) for 1979-2001 (Mori 2006, Nishijima et al. 2021, Moriyama and Okamoto 2023)

Calculation

$N_{t}=q U_{t}$
Mean C_{t} / N_{t} for 1979-2001 is 0.3.
q was calculated with (C / U) / 0.3

- C is catch
- U is standardized CPUE
- C / U corresponds to a mean value for 1979-2001
$\square q=18.0$

Results

Decreased largely from 2015 to 2016 and has remained low level since then

Time series of F

Fluctuating around 0.5 in recent years

Spawning stock biomass per recruitment (\%SPR)

Fluctuating around 60\% in recent years

Stock status

Stock-recruitment relationship

The Beverton-Holt stock-recruitment model was applied

Kobe plot

SSB is lower than SSBmsy, and F is lower than Fmsy in 2021

MSY reference points were estimated by stochastic simulation with a random variability of recruitment based on the stock-recruitment relationship

Summary

\checkmark The estimated total biomass of the winter spawning stock decreased largely from 2015 to 2016 and has remained low level since then
\checkmark The MSY-based reference points were estimated from the stochastic simulation with the Beverton-Holt stock-recruitment relationship
\checkmark In 2022, the estimated total biomass was 141,000 MT and SSB was 49,000 MT
\checkmark SSB is lower than SSBmsy, and F is lower than Fmsy in 2021

Future issues

\checkmark In the current stock assessment method, there are uncertainties such as using fixed q value
\checkmark SAMUIKA (State-space Assessment Model Used for IKA, Nishijima et al. 2021) is the topprioritized stock assessment model applied for the future domestic JFS stock assessment in Japan

