
North Pacific Fisheries Commission 

 2nd Floor Hakuyo Hall,  
Tokyo University of Marine Science and Technology, 

4-5-7 Konan, Minato-ku, Tokyo

108-8477, JAPAN

TEL +81-3-5479-8717
FAX +81-3-5479-8718

Email secretariat@npfc.int

Web www.npfc.int

NPFC-2023-TWG CMSA07-WP07 (Rev. 1) 

On the description and flexibility of state-space assessment model 

Shota Nishijima and Momoko Ichinokawa 

Fisheries Resources Institute, 

Japan Fisheries Research and Education Agency (FRA) 

(Corresponding author: Shota Nishijima, nishijima_shota02@fra.go.jp) 

Introduction 

Through a long way of model selection, it has been concluded that SAM showed the best 

model performance from the summary metrics of selected performance measures (Rice 

2023). Not all members are familiar with SAM, and details of description and usage of 

SAM are not fully shared in the TWG CMSA except the previous document (Nishijima 

et al 2022) that only briefly introduce SAM. For transparency and facilitation of 

collaborative work, the details of SAM as the stock assessment model for chub mackerel 

should be revisited and shared with the TWG CMSA members.  

   This document describes model structures of SAM in detail and how to use an R 

package of SAM (“frasam”) developed for the stock assessment of chub mackerel. We 

then demonstrate that SAM has flexible features and can mimic other candidate models 

(ASAP, KAFKA, and VPA) in terms of fishery selectivity and the measurement errors in 

catch at age by posing some constraints. We also show how to treat within-model and 

among-model uncertainties in SAM. Since SAM can introduce variety types of random 

components that can be developed by us, ‘frasam’ can be flexibly adjusted and improved 

for the chub mackerel stock assessment in a collaborative manner in the TWG CMSA. 

Basic model structure 

We first introduce the original structure of SAM (Nielsen and Berg 2014) and then 

describe our adjustments to chub mackerel stock assessment in the next section. The 

population dynamics in SAM basically follows age-structured models: 



log(𝑁1,𝑦) = log[𝑓(𝑆𝑆𝐵𝑦−1)] + 𝜂0,𝑦,   (1) 

log(𝑁𝑎,𝑦) = log(𝑁𝑎−1,𝑦−1) − 𝐹𝑎−1,𝑦−1 − 𝑀𝑎−1,𝑦−1 + 𝜂𝑎,𝑦,    2 ≤ a ≤ A-1 (2) 

log(𝑁𝐴+,𝑦) = log(𝑁𝐴−1,𝑦−1𝑒−𝐹𝑎,𝑦−1−𝑀𝑎,𝑦−1

+ 𝑁𝐴+,𝑦−1𝑒−𝐹𝐴+,𝑦−1−𝑀𝐴+,𝑦−1) + 𝜂𝐴+,𝑦 , 

 
(3) 

where ηa,y is the process error at age a in year y following 𝜂𝑎,𝑦~𝑁(0, 𝜔𝑎
2). It was assumed 

that the recruitment occurs at age 1 and the maximum age class is plus group (A+). 

Although the original paper (Nielsen and Berg 2014) used a stock-recruitment 

relationship (𝑓(𝑆𝑆𝐵𝑦−1) ), the uploaded code includes another option of random-walk 

recruitment (https://kaskr.github.io/adcomp/sam_8cpp-example.html):  

log(𝑁1,𝑦) = log(𝑁1?,𝑦−1) + 𝜂0,𝑦.   (4) 

While other stock assessment models like ASAP usually estimate process errors only for 

recruitment, SAM has the advantage that process errors for older ages can be estimated, 

which reflects random variations such as varying natural mortality.  

In SAM, the fishing mortality coefficient is assumed to follow a multivariate random 

walk: 

log (𝑭𝒚) = log (𝑭𝒚−𝟏) + 𝝃𝑦 , (5) 

where 𝑭𝒚 = (𝐹1,𝑦, … , 𝐹𝐴+,𝑦)𝑇, 𝝃𝒚~MVN(0, 𝚺), and 𝚺 is the variance-covariance matrix 

of multivariate normal distribution (MVN). The diagonal elements of matrix 𝚺 were 𝜎𝑎
2, 

while off-diagonal elements represent covariance of F process errors between age classes. 

The original paper tested four covariance structures and found that the assumption that 

the correlation depends on age differences had the lowest AIC: 𝜌|𝑎−𝑎′|𝜎𝑎𝜎𝑎′ (a ≠ a’) 

with 49 years of North Sea cod data, where 𝜌|𝑎−𝑎′|  corresponded to the correlation 

coefficient of F between ages a and a’ (see details in Nielsen and Berg 2014). In addition, 

the case study shown by the original paper assumed 𝐹𝐴+,𝑦 = 𝐹𝐴−1,𝑦  to stabilize 

parameter estimation.  

SAM uses the Baranov equation for estimates in catch-at-age: 

00006909
タイプライター
Fy,f = log F_(y-1, f) + ...



�̂�𝑎,𝑦 =
𝐹𝑎,𝑦

𝐹𝑎,𝑦 + 𝑀𝑎,𝑦
(1 − exp(−𝐹𝑎,𝑦 − 𝑀𝑎,𝑦))𝑁𝑎,𝑦 . (5) 

SAM then fit to observed catch-at-age in a lognormal assumption: 

log(𝐶𝑎,𝑦) = log(�̂�𝑎,𝑦) + 𝜀𝑎,𝑦 , (6) 

where 𝜀𝑎,𝑦~N(0, 𝜏𝑎
2). SAM was originally fitted to age-specific abundance index in a 

lognormal assumption (Nielsen and Berg 2014): 

log(𝐼𝑎,𝑦) = log(𝑞𝑎𝑁𝑎,𝑦) + 𝜂𝑎,𝑦 , (7) 

where 𝜂𝑎,𝑦 is the measurement error of index for age a in year y: 𝜂𝑘,𝑦~𝑁(0, 𝜈𝑘
2).  

SAM estimates �̂�𝑎,𝑦 and �̂�𝑎,𝑦 as random effects using the marginal likelihood with 

fixed-effect parameters of 𝜔𝑎, 𝜎𝑎, 𝜌, 𝜏𝑎, 𝑞𝑎, and 𝜈𝑎. The joint likelihood has therefore 

the components of observation and random effects. Since the integral for the marginal 

likelihood is difficult to calculate directly, SAM uses the Laplace approximation, which 

enables fast and accurate computation via TMB (Kristensen et al. 2016). Moreover, 

SAMs with different settings are quantitatively comparable using criteria such as AIC in 

terms of whether some parameters are estimated or fixed and how parameter constraints 

are imposed. 

   SAM has been developed from the original study by researchers around the world. 

For example, a recent study extended SAM into multiple fleets (Nielsen et al. 2021), 

which may be useful for considering chub mackerel fisheries by different members. While 

it is recommended to estimate natural mortality (M) within a stock assessment model 

rather than assume M (Punt et al. 2021; Maunder et al. 2023), M may be estimable in 

SAM. Moreover, we have an experience of extending SAM to Japanese flying squid with 

longevity of one year so that SAM is applicable to stocks having no age-structure 

(Nishijima et al. 2021). This extensibility helps us to improve chub mackerel stock 

assessment by incorporating biological characteristics and fisheries of chub mackerel. We 

have already revised and extended SAM’s configurations for the chub mackerel stock 

assessment as shown in the next section. 

 

Adjustments to chub mackerel stock assessment 

To apply SAM to chub mackerel, we have made several adjustments from the original 

model configurations as follows: 

00006909
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Ca,y,f=Fa,y,f/(Fa,y+Ma)(1-exp(-Fa,y-Ma))Na,y
  if Fa,y,f is estimated as random effect, the model is fleet structured (future study)
  if not, we can calculate Fa,y,f without errors of Ca,y,f

TCa,y,f=ΣCa,y,f * Wa,y,f (total catch by fleet)
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1. Recruiting age has changed from one to zero. 

2. The magnitude of process errors in numbers for ages older than 0 can be fixed at a 

given value,  

3. Random walk of F in a year can be removed from the joint likelihood, 

4. Nonlinear relationships can be estimated in fitting abundance indices, 

5. Age-aggregate abundance indices can be used. 

Revision 1 is required because chub mackerel recruits at age 0. Revision 2 was made 

because estimating the process errors other than recruitment destabilized parameter 

estimation and did not match with the assumption of PopSim. We fixed the variance for 

the ages older than 0 at a small value (𝜔𝑆,𝑎
2 = 0.0001). We implemented the option of 

Revision 3 because the fishing effort on chub mackerel possibly greatly decreased in 2011 

from the previous year owing to the Great East Japan Earthquake and tsunami in March 

2011. Revision 4 was implemented so that the goodness of fit would be improved. 

Revision 5 was made because we needed to use age-aggregate abundance indices for 

spawning stock biomass and vulnerable biomass. As a result, the function of fitting 

abundance indices can be expressed as  

log(𝐼𝑘,𝑦) = log(𝑞𝑟𝑋𝑦
𝑏𝑘) + 𝜂𝑘,𝑦 , (8) 

where 𝑏𝑘 is the nonlinear coefficient and 𝑋𝑦  is the corresponding abundance such as 

the number of recruits, spawning stock biomass, and vulnerable stock biomass. 

the measurement error of index k in year y: 𝜂𝑘,𝑦~𝑁(0, 𝜈𝑘
2).  

SAM requires estimation of many parameters. We then imposed the following 

constraints to stabilize estimation and avoid overfitting:  

𝜔𝑆,𝑎 = 𝜔𝑆  (∀𝑎 (𝑎 > 0)) ,   (15) 

𝜎0 = 𝜎1, 𝜎2 = 𝜎3 = ⋯ = 𝜎𝐴 ,   (16) 

𝜏2 = 𝜏3, 𝜏5 = 𝜏6+. 
 

(17) 

These constraints were determined based on the Akaike information criteria (AIC). The 

other details are shown in the previous working document (Nishijima et al. 2022). 

 

Description of R package ‘frasam’ 

We have been developing SAM available for the stock assessment of chub mackerel as a 



R package “frasam”. The code of “frasam” was evolved from the original C++ code on 

the website of TMB documentation (https://kaskr.github.io/adcomp/sam_8cpp-

example.html) through some revisions including the above points.  

The source codes we used are available as R package ‘frasam’ through GitHub 

(https://github.com/ShotaNishijima/frasam/tree/dev). One can install as follows: 

We here show an example code when we analyzed Scenario A with real data. We firstly 

formatted data for the input of SAM like this: 

We made matrix-style data with columns of years and rows of ages for catch-at-age, 

weight-at-age, and so on. “data.handler” is a function for data formatting for SAM and 

VPA in our another package “frasyr” (https://github.com/ichimomo/frasyr). We need to 

compile and activate the C++ file for SAM (“sam.cpp”) before analyzing: 

install.packages(“devtools”) # if not installed 

devtools::install_github("ShotaNishijima/frasam", ref="dev") 

library(frasam) 

library(tidyverse) 

merged_dat = read.csv("MergedData(chub_mackerel)200928.csv",header=T) 

merged_dat = merged_dat %>% mutate(year_label = str_c("X",as.character(year))) 

caa0 = merged_dat %>% dplyr::filter(label == "catch-at-age") %>% 

  pivot_wider(id_cols=age,names_from=year_label,values_from=value) %>%  

  column_to_rownames(var = "age") 

maa0 = merged_dat %>% dplyr::filter(label == "maturity-at-age") %>% 

  pivot_wider(id_cols=age,names_from=year_label,values_from=value) %>%  

  column_to_rownames(var = "age") 

waa0 = merged_dat %>% dplyr::filter(label == "weight-at-age") %>% 

  pivot_wider(id_cols=age,names_from=year_label,values_from=value) %>%  

  column_to_rownames(var = "age") 

index0 = merged_dat %>% 

pivot_wider(id_cols=c(label,fleet,age),names_from=year_label,values_from=value) %>% 

  dplyr::filter(label == "abundance_index") %>% 

  select(-label,-age,-fleet) %>% 

  mutate(rowname=1:n()) %>% 

  column_to_rownames(var = "rowname") 

dat1 <- data.handler(caa0, waa0, maa0, index0, M=0.41) 

use_sam_tmb(overwrite=TRUE) 

https://kaskr.github.io/adcomp/sam_8cpp-example.html
https://kaskr.github.io/adcomp/sam_8cpp-example.html
https://github.com/ShotaNishijima/frasam/tree/dev
https://github.com/ichimomo/frasyr


We then analyze SAM as follows: 

Descriptions of above arguments are shown in Table 1. The settings are almost identical 

to those used for the analyses of real data and pseudo data, but we here did not remove 

the random walk of F from 2010 to 2011 so that AIC of different settings would be 

comparable (see below).  

This package is still under development, and we will improve its availability by 

enhancing manuals, functions’ helps, test codes and model diagnostic tools so that one 

can easily understand and analyze SAM via frasam. We can collaboratively work the 

development and improvement of SAM with TWG members via GitHub. We have 

uploaded R codes that we used in fitting real and pseudo data in the analyses of SAM and 

VPA on the Collaboration website (https://collaboration.npfc.int/node/126) for 

reproducibility and transparency. 

 

SAM as a flexible and intermediate model 

One of most important features of SAM is its flexibility including a variety of random 

components so that SAM naturally has intermediate features between other candidates of 

sam_base1 <- sam( 

  dat1,  

  abund = c("N","N","SSB","SSB","Bs","Bs"), 

  min.age=c(0,0,0,0,0,0), 

  max.age = c(0,0,6,6,6,6), 

  SR = "RW",  

  index.key=c(0,0,1,1,2,2), 

  b.est=TRUE, 

  index.b.key = c(0,1,2,3,4,4), 

  b.fix=c(NA,NA,1,1,NA), 

  varC = c(0,1,2,2,3,4,4), 

  varF = c(0,0,1,1,1,1), 

  varN = c(0,1,1,1,1,1,1), 

  varN.fix=c(NA,1e-4),  

  rho.mode=3, 

  bias.correct = TRUE, 

  p0.list = NULL, 

  map.add = NULL 

) 



the stock assessment models discussed in the TWG CMSA. A remarkable difference in 

the model assumption of the other three models (ASAP, KAFKA and VPA) relates to 

selectivity and measurement errors in catch-at-age. ASAP assumes constant selectivity 

over time while it estimates measurement errors in catch-at-age. On the other hand, 

KAFKA and VPA assume no measurement errors in catch at age while they are not subject 

to selectivity constraints, which means time-varying selectivity. However, SAM can 

simultaneously estimate both time-varying selectivity and measurement errors in catch at 

age under the random-walk assumption in fishing mortality at age. This intermediate 

feature of SAM indicates that it does not require the extreme assumptions made by other 

candidate models and would represent realistic situations of fisheries with selectivity 

smoothly and temporally varied (Nielsen and Berg 2014). Because the smoothness of 

time-varying selectivity can be controlled by imposing some constraints on the 

parameters of selectivity and measurement errors in catch-at-age in SAM, it can mimic 

the other models. 

The constant selectivity assumed by ASAP is achievable if each element in the 

variance-covariance matrix of F random walk is assumed to have a same value: 

𝚺 = (
𝜎2 ⋯ 𝜎2

⋮ ⋱ ⋮
𝜎2 ⋯ 𝜎2

) , (4) 

This means that F at each age changes in the same way, causing selectivity constant over 

time. This is possible if one fixes at 𝜌 = 1 and estimates a common value of 𝜎 across 

all age classes. This constraint makes SAM close to the assumption of ASAP (but error 

structures of catch at age are different because ASAP assumes a lognormal error for total 

catch and multinomial errors in catch composition). This revision to constant selectivity 

is easily feasible in frasam: 

The list of arguments is stored as ‘input’. We changed the arguments of ‘varF’ (constraints 

on the variance in F random walk process) and “rho.mode’ (correlation structure of 

variance-covariance matrix in F random walk process) and removed the option for bias 

correction (Table 1). The other model configurations were assumed to be identical in 

SAM. We call here this model ‘ASAP-like’ model. 

input <- sam_base1$input 

input$varF <- rep(0,7) 

input$rho.mode <- 1 

input$bias.correct <- FALSE 

asap_like1 <- do.call("sam",input) 



   No measurement errors of catch-at-age as assumed by VPA and KAFKA are almost 

achievable if the variance of measurement errors in catch-at age (𝜏𝑎
2) is fixed at a very 

small value. This constraint makes SAM close to the assumption of KAFKA and VPA. 

In frasam, two steps are needed for posing this constraint: 

In this first step above, we assumed and estimated a common value of measurement errors 

in catches for all age classes. We then fixed at the measurement errors at 𝜏𝑎
2 = 0.0001 

(𝜏𝑎 = 0.01) as follows: 

The estimated parameters are stored as ‘par_list’ in a list format, which would be used 

for initial parameters in the second-step analysis. The initial value for measurement errors 

in catches was changed to the small value by the second line. The argument of ‘map.add’ 

was used to fix the parameter for catch at age. The other model configurations were 

assumed to be identical in SAM. We call here this model ‘VPA-like’ model (there is no 

particular reason why we don’t call it ‘KAFKA-like’ model).  

As a result, while SAM shows a gradual change in selectivity at age, the VPA-like 

model exhibits the highest levels and ASAP-like model has constant selectivity over time 

(Fig. 1). For the fits to the catch at age, the VPA-like model estimated the almost same 

values of observed catch-at-age and the ASAP-like model showed the lowest fitting to 

observation while SAM moderately fitted to observed catch-at-age (Fig. 2). Abundance 

estimates were similar between SAM and the ASAP-like model, although the ASAP-like 

model estimated slightly lower abundances than SAM (Fig. 3). The VPA-like model 

estimated higher abundances than the other two models (Fig. 3).  

Importantly, performances of the different settings of SAM are easy to be compared 

by using AIC and other criteria. In this example data of chub mackerel, it is shown that 

input <- sam_base1$input 

input$varC <- rep(0,7) 

input$bias.correct <- FALSE 

temp <- do.call("sam",input) 

p0_list = temp$par_list 

p0_list$logSdLogObs[1] <- log(0.01) #fixed at SD=0.01 

map_add = list("logSdLogObs" = factor(c(NA,0:2))) 

input = temp$input 

input$map.add <- map_add 

input$p0.list <- p0_list 

vpa_like1 = do.call("sam",input) 



SAM has achieved the minimum AIC. This suggests that the intermediate assumptions 

on time-varying selectivity and the measurement errors in catch at age for SAM are 

plausible compared with their extreme assumptions in the other three models. We have 

also uploaded the R code for this demonstration on the Collaboration website 

(https://collaboration.npfc.int/node/126).  

 

Parameter uncertainties and model averaging 

While the TWG CMSA has focused on point estimates from stock assessment models in 

evaluating model performances, parameter uncertainties in estimation will be a matter of 

debate for judging latest stock status and considering future projection and management 

advice. SAM outputs standard deviations of fixed effects, random effects, and derived 

parameters by the delta method via TMB. On the other hand, SAM can iteratively 

generate the parameters with random errors from a variance-covariance matrix or joint 

precision matrix under the assumption of multivariate normal distribution as with other 

stock assessment models. This feature will be useful for not only quantification of 

uncertainty in stock status but also future projection with estimation uncertainty because 

it is ideal for future predictions to incorporate the uncertainties of both estimated 

parameters and future processes. Sample sets of parameters generated from multivariate 

normal distributions will be respectively used for future projection with process errors 

mainly from recruitment variability. 

   Quantification of estimation uncertainty is also useful to treat multiple models with 

different settings and assumptions. For example, it is one of the most difficult things in 

stock assessments to determine natural mortality (M). TWG CMSA currently considers 

two sets of natural mortality scenarios: age-common M and age-specific M. Here we 

demonstrate a way of model averaging of different M assumptions using scenarios A and 

B. 

> c("SAM"=sam_base1$aic,"ASAP-like"=asap_like1$aic,"VPA-like"=vpa_like1$aic) 

   SAM   ASAP-like  VPA-like  

 1012.649  1035.778  1145.855 

https://collaboration.npfc.int/node/126


   Scenario B can easily be analyzed by replacing data of scenario A in frasam: 

SSB under the age-specific M scenario (B) in the last year (2019) was estimated to be 

lower than that under the age-common M scenario (A) and their probability distributions 

generated from their joint precision matrices of fixed-effect and random-effect parameters 

are shown in Fig. 4. One may consider the need to incorporate the uncertainty from 

different M assumptions into the chub mackerel stock assessment. AIC of these two 

scenarios is comparable and showed that the age-common M scenario had slightly better 

goodness-of-fit (ΔAIC = 0.42). This suggests that putting a heavier weight on the age-

common M scenario according to Akaike weights may be plausible. 

For model averaging, we therefore took samples from the scenario A with weight 

of 55.2% and from the scenario B with weight of 44.8%. The probability distribution of 

SSB in the model averaging was located at an intermediate position, but relatively close 

to age-common M (Fig. 4). Although this demonstration is a preliminary idea for model 

averaging, it highlights the ability of SAM to easily deal with among-model uncertainty 

as well as within-model uncertainty and employ model averaging with appropriate 

weighting. 

 

Final remarks 

Ensemble modeling has increasingly been used in fisheries stock assessments (Jardim et 

al. 2021; Stewart and Hicks 2018; Stewart and Martell 2015). One of the pros in the 

ensemble modeling is better consideration of uncertainty (Ducharme-Barch and Vincent 

2022), while its cons are costs for time and efforts and potential biases by inclusion of 

dat2 = dat1 

dat2$M[] <- 

matrix(rep(c(0.57,0.47,0.38,0.32,0.28,0.26,0.24),ncol(dat2$M)),ncol=ncol(dat2$M)) 

input = sam_base1$input 

input$dat <- dat2 

input$p0.list <- sam_base1$obj$env$parList() 

sam_base2 = do.call("sam",input) 

> delta = c(sam_base1$aic,sam_base2$aic) 

> (delta = delta - min(delta)) 

[1] 0.0000000 0.4191264 

> (weight = exp(-delta/2)/sum(exp(-delta/2))) 

[1] 0.5521999 0.4478001 



biased and/or flawed models. Neubauer et al. (2023) illustrated that using a simple 

simulation, an ensemble of multiple models with wrong assumptions estimated more 

biased stock status and productivity than a single model (see Fig. 6 in 

https://meetings.wcpfc.int/file/13043/download). 

In the case of chub mackerel stock assessment, there is no evidence that the prediction 

skill will be improved by the ensemble approach at this moment, while there is a potential 

risk of estimation bias because some candidate models showed serious biases even in the 

self-test (Joel 2023). Ensemble modeling in fisheries stock assessments is used to cover 

structural and parameter uncertainties (Jardim et al. 2021). For structural uncertainty, we 

demonstrated in this document that SAM can mimic the structures and assumptions of 

the other models. We also showed that SAM can incorporate the uncertainty of fixed 

parameters using different scenarios of natural mortality as an example. Accordingly, 

there seems to be no clear advantages of taking the ensemble modeling in the TWG 

CMSA from a scientific view. 

From an operational view, the ensemble approach requires a lot of things to be 

considered such as how to ensemble different models (Ducharme-Barch and Vincent 

2022; Neubauer et al. 2023), but we don’t have sufficient time to the first stock assessment. 

More importantly, it appears that taking the ensemble modeling will require much human 

effort and labor cost. Consider situations where each member analyzes different models 

independently by using their methods of computer languages, codes, and packages. This 

means that each member must do the best every time of stock assessment and efforts on 

analyses and review inevitably increase as much as the number of stock assessment 

models. More invited experts may be needed to review each stock assessment model and 

approve individual results. We already know from the previous demanding process how 

difficult it is to align the data to be used, to keep pace among members, and to reach a 

clear understanding of all models. It will be better to learn from our experience through 

the simulation works for the model competition.  

Another concern is that naive ensemble of candidate models proposed by members is 

just a collection of ‘independent’ results, which is far removed from scientific 

collaborative work in the true sense. To be more productive, we would like to suggest that 

members collaboratively work on the improvements of SAM rather than ensemble 

modeling. SAM can flexibly adjust model configurations, suggesting high extensibility 

to treat structural and parameter uncertainties. While the one of most important pros in 

ensemble modeling is consideration of wide range of uncertainty, the uncertainty on 

model structures and assumptions such as selectivity and natural mortality can be 

represented within the range of model configurations by SAM, as illustrated in this 

https://meetings.wcpfc.int/file/13043/download


document. Because of its flexibility, SAM will be improved by adding a new idea that a 

member thinks of for model improvements. This collaborative work will keep 

transparency and save our effort and labor cost, because we can use the same format and 

quantitative measures such as AIC when evaluating and comparing models. Such 

collaborative development of the single model specific for chub mackerel, rather than 

simple competition of existing models, would promote further understanding of chub 

mackerel population dynamics more deeply and thereby help international management 

of this species in a collaborative manner.   
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Table 1: Descriptions of arguments in the ‘sam’ function. 

Argument Description 

abund Targets of abundance indices. “N”: population number, “SSB”: spawning 

stock biomass, “Bs”: vulnerable biomass, and “B”: biomass (default). 

min.age The minimum age for the abundance indices in the argument ‘abund’. 

max.age The maximum age for the abundance indices in the argument ‘abund’. 

The same values of ‘min.age’ and ‘max.age’ indicate age-specific 

abundance index, whereas otherwise indicate age-aggregate indices. 

SR The form of stock-recruitment relationships. “BH”: Beverton-Holt 

(default), “RI”: Ricker, “RW”: Random walk, and “Const”: Constant 

average recruitment with random errors. The option of hockey-stick 

(“HS”) is under development. 

index.key Constraints on measurement errors for abundance indices. The same 

value indicates a common value shared among abundance indices 

(default: NULL). 

b.est  Whether nonlinear coefficients for abundance indices are estimated 

(default: FALSE) 

b.fix Able to fix nonlinear coefficients at a certain value (mostly 1). Its length 

should be the number of abundance indices (default) or the number of 

different values of ‘index.b.key’ (otherwise). The fixed values should be 

inputted and NA for otherwise. 

varC Constraints on measurement errors in catch at age. Its length should be 



the number of age classes or one (i.e., common for all age classes). The 

same value indicates a common value shared among age classes (default: 

0). 

varF Constraints on process errors in F random walk. Its length should be the 

number of age classes or one (i.e., common for all age classes). The same 

value indicates a common value shared among age classes (default: 0). 

varN Constraints on process errors in numbers by age. Its length should be the 

number of age classes or one (i.e., common for all age classes). The same 

value indicates a common value shared among age classes (default: 0). 

varN.fix Able to fix the variances of process errors in numbers at a certain value. 

Its length should be the number of different values of ‘varN’. The values 

of fixed variances should be inputted and NA for otherwise. 

rho.mode Correlation structure of variance-covariance matrix in F random walk. 0: 

almost no correlation for all combination of age classes (accurately 

ρ=0.000001), 1: almost complete correlation for all combination of age 

classes (accurately ρ=0.999999), 2: same correlation between any two 

age classes, 3: correlation following the power-law function of age 

differences 𝜌|𝑎−𝑎′|. 

bias.correct Whether the generic method of bias correction is implemented for 

random effects (default: TRUE). 

p0.list  Initial parameter values as a list format (default: NULL).  

map.add Additional parameter that are fixed at initial values. A list format with 

parameter names is needed (default: NULL). 

 

 



 

Figure 1: Temporal changes of selectivity at age in different model assumptions. 

Selectivity at age a in year y was obtained as 𝑠𝑎,𝑦 = 𝐹𝑎,𝑦 ∑ 𝐹𝑎,𝑦𝑎⁄ . 

 

 

Figure 2: Estimates in catch numbers at age 0 to 6+ in different model assumptions. Note 

that y-axis is a logarithmic scale.  

 



 

Figure 3: Estimates of biomass, SSB, the number of recruits, and exploitation rate in 

different model assumptions. 

 

 

Figure 4: Probability distributions of SSB in the last year (2019) under scenarios of age-

common M (A), age-specific M (B) and their weighted average by Akaike weights. The 

vertical dash lines represent mean values. 

 

 


