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Summary 

We estimated egg abundances from monthly egg density data obtained by research 
surveys, which can be used as an abundance index of spawning stock biomass (SSB) for 
the Pacific stock of chub mackerel. We applied the vector-autoregressive spatio-temporal 
(VAST) model to the monthly egg survey data from 2005 to 2023 off the Pacific coast of 
Japan to cover the spawning ground of chub mackerel. This document provides important 
references and diagnostics on this standardization according to the “CPUE 
Standardization Protocol for Chub Mackerel”. The standardized CPUE reached its peak 
in 2019, but has been on a downward trend since then, reaching its lowest level in 2023 
since 2005. Since we found no serious problems in the diagnostics of the spatio-temporal 
model, we suggest the estimated index can be used as an SSB abundance index for the 
forthcoming stock assessment of chub mackerel in the Technical Working Group for the 
Chub Mackerel Stock Assessment. 
 
1. Background of the chub mackerel egg survey data 

In Japan, monthly egg surveys have been intensively conducted off the Pacific coast of 
Japan in the western North Pacific since 1978 by a historical cooperative system among 
many national and regional fisheries research bodies. The objective of this egg survey is 
to monitor egg abundance of major small pelagic fish species such as Japanese sardine, 
Japanese anchovy, chub mackerel, etc. The survey area roughly covered the major 
spawning grounds of small pelagic fish off the Pacific coast, mainly inshore waters but 
also offshore waters related to the warm Kuroshio and cold Oyashio currents. Further 
details on the objectives and designs of this egg surveys are described in Takasuka et al. 
(2008a, b) and Takasuka et al. (2017).  

For the study of chub mackerel in the western North Pacific, Kanamori et al (2019) 
estimate spatiotemporal distribution of egg density of chub mackerel to reveal long-term 
changes in spawning patterns and spawning grounds. In their study, spatio-temporal 
distribution of egg density of chub mackerel was predicted by the vector-autoregressive 
spatio-temporal (VAST) model to consider spatial autocorrelation and spatio-temporal 
interaction. 

In this document, we applied the VAST to the egg survey data from 2005 to 2023 
to derive egg abundance, which should represent relative SSB. We provide important 
references and diagnostics on this standardization according to the “CPUE 
Standardization Protocol for Chub Mackerel” as well as estimated values of abundance 
indices as the input data of forthcoming stock assessment of chub mackerel.  
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2. Methods 

2.1 The data 
The monthly egg surveys off the Pacific coast have been conducted by 18 prefectural 
experimental stations or fisheries research institutes and 2 national research institutes of 
the Japan Fisheries Research and Education Agency following the same procedure. In the 
egg surveys, conical or cylindrical conical plankton nets with mouth ring diameters of 45 
or 60 cm and mesh sizes of 0.33 or 0.335 mm were towed vertically form 150 m depth (if 
the depth was <150 m, nets were lowered to just above the bottom). The number of eggs 
observed by each sampling was then converted into density (number/m2) and averaged 
arithmetically with 30’ latitude × 30’ longitude horizontal square resolution by month as 
monthly aggregated data. Further details of the survey method and data aggregation are 
described in Takasuka et al. (2008 a,b) and Takasuka et al. (2017).  

Although the survey data was available throughout the year around the Japanese 
Islands, we used the data since 2005 when species identification between chub and blue 
mackerels is conducted. In addition, we further filtered the data for representing the 
Pacific stock during January to July so that the main spawning season of Pacific stock of 
chub mackerel was covered (Table 1). The number of observations by year and 30’ 
latitude × 30’ longitude grid, the number of observations with positive catch, and average 
egg density are shown in Table 2. The number of observations did not systematically vary 
among years. The spatiotemporal distribution of survey efforts and average egg density 
are shown in Fig. 1. Surveys were conducted in the area from 131.5º–149.5º E and 26.5º–
42.5º N. 

In this document, to account for the spatial autocorrelation and spatio-temporal 
interaction of the egg density (Kanamori et al. 2019), we incorporated the spatial and 
spatio-temporal random effects in the model (Table 3) by using VAST (Thorson 2019). 
While we did not estimate spatial distributions by month in the previous document 
submitted to this TWG (Nishijima et al. 2022, NPFC-2022-TWG CMSA06-WP10), we 
here incorporated the monthly effect on spatial distributions into the model according to 
Thorson et al (2020), because the spatial distributions of chub mackerel eggs depend 
greatly on months (Kanamori et al. 2019). We present the trends of response variables 
(the proportion of positive catches and egg density) by the year and month in Fig. 2. 
Catchability of eggs is considered less affected by environmental variables and, hence, 
we did not consider the effect of environmental factors in this analysis. 
 
2.2 Full model description and model selection 
We used the vector autoregressive spatio-temporal (VAST) model (Thorson 2019), which 
accounts for the spatio-temporal changes in survey design and observation rates and can 
accurately estimate relative local densities at high resolution. The model has been used 
for various objectives such as standardization of CPUE (e.g., Thorson et al. 2015) and 
understanding of distribution shifts (e.g., Thorson et al. 2016, Kanamori et al. 2019). 

The model includes two components, (i) the encounter probability 𝑝𝑝t,𝑖𝑖 for time step 
t at location i and (ii) the expected egg density 𝑑𝑑t,𝑖𝑖 when spawning eggs are encountered. 
Encounter probability 𝑝𝑝t,𝑖𝑖 and positive density 𝑑𝑑t,𝑖𝑖 are approximated using Gaussian 
random fields (a multidimensional generalization of Gaussian process): 
 

logit 𝑝𝑝𝑡𝑡,𝑖𝑖 = 𝛽𝛽𝑡𝑡
(𝑝𝑝) + 𝐿𝐿𝜔𝜔(𝑝𝑝)𝜔𝜔𝑖𝑖 + 𝐿𝐿𝜀𝜀(𝑝𝑝)𝜀𝜀𝑡𝑡,𝑖𝑖,      (1) 
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log 𝑑𝑑𝑡𝑡,𝑖𝑖 = 𝛽𝛽𝑡𝑡
(𝑑𝑑) + 𝐿𝐿𝜔𝜔(𝑑𝑑)𝜔𝜔𝑖𝑖 + 𝐿𝐿𝜀𝜀(𝑑𝑑)𝜀𝜀𝑡𝑡,𝑖𝑖, 

 
where, 𝛽𝛽t are the time step specific coefficients, 𝐿𝐿𝜔𝜔 and 𝐿𝐿𝜀𝜀 are spatial and spatio-temporal 
random effects. Since we used the seasonal model of VAST (Thorson et al. 2020), the 
time step specific coefficient 𝛽𝛽𝑡𝑡 is represented as: 

𝛽𝛽t = 𝜇𝜇𝛽𝛽 + 𝛽𝛽𝑚𝑚(𝑚𝑚𝑡𝑡) + 𝛽𝛽𝑦𝑦(𝑦𝑦𝑡𝑡),       (2) 
where 𝜇𝜇𝛽𝛽 is the intercept, which represents the average across all years and months, 
𝛽𝛽𝑚𝑚(𝑚𝑚𝑡𝑡) is the effect of month m, and 𝛽𝛽𝑦𝑦(𝑦𝑦t) is the effect of year. These parameters are 
estimated as fixed effects. Although we also consider a model including the interaction 
between year and month, the model failed to converge, and we dropped this term. Note 
that even without the interaction term between year and month, this model assumes that 
seasonal shifts of egg densities can depend on years by the spatio-temporal random effects, 
𝐿𝐿𝜀𝜀. More detailed information on the seasonal VAST model was provided by Thorson 
(2019) and Thorson et al (2020).  

The response variables in the positive density were assumed to follow a gamma 
distribution with log link, while the occurrence of positive catch was assumed to follow 
a binomial distribution with logit link. The gamma distribution was used because gamma 
models generally obtained less biased and more robust estimates than lognormal models 
and, therefore, it is suggested to use a gamma distribution for index standardization 
(Cadigan and Myers 2001; Thorson et al., 2021).  

Spatial resolution (number of knots) for the spatio-temporal variation was set as 
100 in the approximation of 𝜀𝜀𝑦𝑦,𝑖𝑖. While the previous document conduct model selection 
with different spatial resolution, this document cannot show such model selection result 
because the seasonal model with >100 knots takes too long time for calculations. On the 
other, we compared AIC between this seasonal model and the model shown in the 
previous document (Nishijima et al. 2022), which estimated annual, but not monthly, 
spatial distributions with consideration for the interaction between year and month as an 
overdispersion factor (random effect). 
 
2.3 Yearly trend extraction 
After estimating the parameters using the VAST package in R, monthly egg densities in 
time t at location s (𝐷𝐷�𝑡𝑡,𝑠𝑠) were derived from the estimates of equation (1): 

𝐷𝐷�𝑡𝑡,𝑠𝑠 = logit−1�𝛽𝛽𝑡𝑡
(𝑝𝑝) + 𝐿𝐿𝜔𝜔(𝑝𝑝)𝜔𝜔𝑖𝑖 + 𝐿𝐿𝜀𝜀(𝑝𝑝)𝜀𝜀𝑡𝑡,𝑠𝑠� × exp�𝛽𝛽𝑡𝑡

(𝑑𝑑) + 𝐿𝐿𝜔𝜔(𝑑𝑑)𝜔𝜔𝑖𝑖 + 𝐿𝐿𝜀𝜀(𝑑𝑑)𝜀𝜀𝑡𝑡,𝑠𝑠�, 
Monthly egg abundances (𝐼𝐼𝑡𝑡,) were then obtained as: 

𝐼𝐼𝑡𝑡 = �𝑎𝑎𝑠𝑠
𝑠𝑠

𝐷𝐷�𝑡𝑡,𝑠𝑠 

where 𝑎𝑎𝑖𝑖 is area associated with location s. We used the area sizes of 30’ latitude × 30’ 
longitude grids, computed by the R package ‘sf’ (Pebesma 2018) as 𝑎𝑎𝑠𝑠. To derive a yearly 
abundance index, we calculated annual estimates of egg abundance by summing up 
monthly egg abundance from January to July: 

𝐼𝐼𝑦𝑦 = �𝐼𝐼𝑦𝑦𝑡𝑡
𝑡𝑡
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3. Results and Discussion 

The AIC of the seasonal VAST model used in this document (102922.4) was much lower 
than the VAST model presented in the previous document (103976.9). This suggests that 
the spatial distributions of chub mackerel eggs shifted monthly.  

The parameter estimates in the seasonal VAST model were stable as the final 
gradients of all parameters were nearly zero (absolute values were less than 0.01) (Table 
4). The Q-Q plot for the standardized residuals that were obtained using the R package 
‘DHARMa’ (Hartig 2022) indicates that the distribution assumption is met (Fig. 3). There 
were no apparent systematic biases in the spatio-temporal distribution of standardized 
residuals (Fig. 4). The spatial and temporal patterns of the response variable (predicted 
abundance) are shown in Fig. 5. 

Yearly standardized CPUE and its uncertainty (CV and 95% CI) is shown in Table 
5 and Fig. 6. The yearly patterns of index trends were similar between nominal and 
standardized CPUEs. Both indices indicate that SSB has increased since 2017 but peaked 
in 2019 and has been decreasing recently. Especially in 2023, both standardized and 
nominal CPUE were the lowest since 2005 and 1/5 and 1/6 of the average of CPUE during 
2020-2022, respectively. It is unlikely that the rapid decline in 2023 is due to 
standardization, as both standardized and nominal CPUE are in decline. 

To discuss possible causes of the decrease in CPUE in 2023, we first focused on 
nominal values of positive catch rates and average egg density in Table 2. As for the 
positive catch rates, the value in 2023 (0.10) is no more than a one-half decrease to the 
average of 2020-2022 (0.15) (Table 2). On the other hand, mean density excluding zero 
catches in 2023 was found to have decreased by more than a third to the average of 2020-
2023 (Table 2). Finally, looking at predicted log density suggests an overall decrease in 
2023 across all months and locations (Fig. 5). These observations suggest that although 
relatively widespread and long periods of spawning occurred in 2023, their average 
density tends to be small uniformly rather than that spawning in certain seasons or areas 
of the ocean has been extremely low. 

The standardized index obtained from this analysis covers a long time series 
ranging from periods of low SSB for chub mackerel in the Pacific Ocean to periods of 
high SSB. This is very valuable information for the CMSA. The standardized indices are 
particularly useful because they not only cover a wide range of surveys, but also use the 
cutting-edge VAST models and have good model diagnostic results. Therefore, we 
propose the estimated index can be used as an SSB abundance index for the forthcoming 
stock assessment of chub mackerel in the TWG CMSA. 
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Table 1. Filter “Rules” used on data for CPUE standardization and the effect on the 
overall sample size. 

Filter Applied  

Number of 
Records 
Remaining Number Removed   

Number of 
Records With 
Chub Mackerel 
Catch >0 

Initial Data set  39082  -  32829 
Remove records except 
for Pacific stock  25379 13703   24524 
Remove records August 
to December  17035 8344  16467 
Final Data Set   17035 8344  16467 

 
 
Table 2. The summary of the survey data: number of surveys (representing the number of 
grids with >0 survey by month), number of positive egg density surveys, the positive 
catch rates, mean egg density including zero catches and excluding zero catches. 
 

Year 
Number of 
observations 
(Grids x Months) 

Number of 
positive-catch 
observations 

The positive 
catch rates 

Mean density 
including zero 
catches 

Mean density 
excluding 
zero catches 

2005 471 67 0.14  45.7 321.1 

2006 784 115 0.15  92.4 630.3 

2007 894 103 0.12  163 1413.5 

2008 879 80 0.09  40.7 447.5 

2009 877 120 0.14  39.8 291.2 

2010 888 111 0.13  76.2 609.4 

2011 857 109 0.13  72 566.0 

2012 878 106 0.12  130 1074.1 

2013 890 117 0.13  122 971.5 

2014 946 111 0.12  65.2 555.4 

2015 903 104 0.12  67 584.0 

2016 879 118 0.13  50 372.8 

2017 834 145 0.17  167 959.7 

2018 908 176 0.19  266 1372.1 

2019 978 177 0.18  317 1750.1 

2020 890 149 0.17  155 925.9 

2021 917 127 0.14  99.5 718.8 
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2022 958 127 0.13  138 1039.1 

2023 832 85 0.10  26 254.4 

 
 
Table 3. Summary of explanatory variables used in VAST. 

Variables 
Number 

of 
categories  

Detail Note 

Year&Month  133 2005–2023 times 7 months (Jan. to 
July)   

Spatial 
random 
factor 

  

0.5x0.5 º grid from 131.5 º –149.5º E 
and 26.5º–42.5º N 

  

Spatio-
temporal 
random 
factor 

    

 
 
Table 4. Estimated parameters Maximum Likelihood Estimates (MLE), standard 
deviation (SD), and final gradient value in full model.  
 
Param MLE SD final_gradient 
ln_H_input 0.394  0.115  -9.35E-09 
ln_H_input 0.483  0.157  -1.54E-08 
beta1_ft -7.617 0.928  1.98E-09 
gamma1_cp 0.866  0.318  2.43E-09 
gamma1_cp 2.351  0.334  -2.01E-10 
gamma1_cp 3.019  0.336  3.88E-10 
gamma1_cp 2.942  0.340  -1.74E-09 
gamma1_cp 2.410  0.335  -8.09E-11 
gamma1_cp 1.305  0.324  1.69E-10 
gamma1_cp 0.256  0.639  9.68E-12 
gamma1_cp 0.038  0.661  -1.12E-10 
gamma1_cp -0.127  0.669  -2.22E-10 
gamma1_cp 0.307  0.657  -2.52E-10 
gamma1_cp 0.115  0.662  -6.45E-10 
gamma1_cp 0.097  0.664  -6.60E-10 
gamma1_cp 0.229  0.673  3.46E-10 
gamma1_cp 0.247  0.673  -4.33E-10 
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gamma1_cp 0.104  0.662  1.86E-10 
gamma1_cp 0.221  0.668  -1.65E-10 
gamma1_cp 0.343  0.660  3.53E-10 
gamma1_cp 0.715  0.661  1.98E-09 
gamma1_cp 0.855  0.649  -6.73E-10 
gamma1_cp 0.649  0.652  8.38E-10 
gamma1_cp 0.618  0.653  1.06E-09 
gamma1_cp 0.576  0.652  -4.67E-10 
gamma1_cp 0.635  0.650  9.60E-11 
gamma1_cp 0.088  0.675  -7.74E-10 
L_omega1_z -1.863  0.234  6.73E-08 
L_epsilon1_z -1.265  0.066  -2.28E-08 
logkappa1 -5.299  0.084  -1.41E-08 
Epsilon_rho1_f 0.445  0.044   -4.84E-08 
beta2_ft 18.314  0.381  -4.58E-09 
gamma2_cp -0.234  0.273  1.51E-09 
gamma2_cp 0.913  0.268  -6.06E-10 
gamma2_cp 0.893  0.264  2.73E-09 
gamma2_cp 0.485  0.269  -2.68E-09 
gamma2_cp 0.441  0.274  -6.28E-10 
gamma2_cp 0.470  0.303  -5.10E-10 
gamma2_cp 0.361  0.338  -1.01E-10 
gamma2_cp 0.539  0.342  -5.40E-09 
gamma2_cp 0.299  0.348  6.28E-11 
gamma2_cp 0.121  0.329  -8.16E-09 
gamma2_cp 0.578  0.336  7.65E-10 
gamma2_cp 0.095  0.338  4.90E-10 
gamma2_cp 0.633  0.343  1.17E-09 
gamma2_cp 0.573  0.342  3.71E-10 
gamma2_cp 0.411  0.337  1.11E-09 
gamma2_cp 0.586  0.339  9.84E-10 
gamma2_cp 0.556  0.326  1.34E-09 
gamma2_cp 0.899  0.333  1.11E-10 
gamma2_cp 1.073  0.324  -2.92E-09 
gamma2_cp 1.395  0.327  1.91E-09 
gamma2_cp 0.897  0.327  6.11E-10 
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gamma2_cp 0.613  0.326  1.85E-09 
gamma2_cp 0.786  0.330  1.31E-09 
gamma2_cp -0.173  0.340  1.59E-10 
L_omega2_z 0.527  0.089  -1.27E-07 
L_epsilon2_z -1.023  0.056  1.95E-07 
logkappa2 -4.265  0.125  8.77E-08 
Epsilon_rho2_f 0.209  0.077  -1.94E-07 
logSigmaM 0.069  0.016 -1.03E-07 

 
 
Table 5. Nominal and standardized egg abundance from 2005 to 2023. 
 

Year 
Nominal egg 
abundance 
(trillion) 

Standardized egg 
abundance (trillion) 

CV 
(%) 

95% CI 

Lower Upper 
2005 47.32  82.59  0.28  52.46  152.20  
2006 157.90  203.70  0.17  150.33  291.24  
2007 334.94  346.59  0.19  247.52  526.61  
2008 81.53  112.67  0.24  75.88  189.35  
2009 74.66  115.60  0.19  82.02  171.75  
2010 164.29  183.20  0.22  125.56  289.45  
2011 144.90  161.56  0.18  118.61  240.64  
2012 271.66  354.51  0.19  256.01  528.67  
2013 263.98  320.42  0.18  234.31  465.94  
2014 146.03  225.53  0.19  160.75  335.05  
2015 145.38  197.28  0.20  140.31  297.88  
2016 100.86  183.88  0.23  121.75  298.81  
2017 335.78  469.89  0.18  339.71  682.18  
2018 601.20  757.63  0.22  525.91  1214.09  
2019 746.73  886.88  0.15  667.26  1220.71  
2020 333.50  493.92  0.18  358.03  731.49  
2021 203.05  288.36  0.20  201.02  439.43  
2022 318.53  475.81  0.21  333.66  749.58  
2023 46.59  77.72  0.23  52.54  126.24  
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Fig. 1. Spatiotemporal distribution of grids with >0 survey efforts (shown by crosses or colored squares), 0 catch (crosses), and average 
density (colored squares) (2005-2009). The density is presented with log 10, and x-axis and y-axis are longitude and latitude, respectively. 
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Fig. 1. Continued (2010-2014)  
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Fig. 1. Continued (2015-2019)  
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Fig. 1. Continued (2020-2023) 
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Fig. 2. The yearly (a) and monthly (b) trend of egg density and the yearly (c) and monthly (d) trend of the number of positive catches. The 
y-axis in (a) and (b) is the log10 scale and the log scale, respectively. Note that, in the (a) and (b), only positive egg density is shown. 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 
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Fig. 3. Quantile-quantile plot of that compares the distribution of the observation and 
prediction of egg density. 
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Fig. 4. Spatio-temporal distribution from January to July (column) in 2005-2009 (row) of the residuals. 
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Fig. 4. Continued (2010-2014) 
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Fig. 4. Continued (2015-2016) 
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Fig. 4. Continued (2020-2023) 
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Fig. 5. Spatio-temporal distribution (2005-2009) of the predicted egg abundance. 
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Fig. 5. Continued (2010-2014) 
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Fig. 5. Continued (2015-2019) 
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Fig. 5. Continued (2020-2023) 
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Fig. 6. The yearly patterns of scaled (divided by mean) nominal and standardized SSB 
indices. Red area is 95% confidence interval of the standardized index. 
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APPENDIX  
Checklist for the CPUE standardization protocol  
No.  Step-by-step protocols  yes/no Note  
1  Provide a description of the type of data 

(logbook, observer, survey, etc. ), and the 
"resolution" of the data (aggregated, set-by-set 
etc..). This description should also include the 
representativeness of the data in two tables: (1st 
table) Number of observations, % Coverage of 
CPUE fleet (catch), % Coverage of CPUE fleet 
(effort), Total Catch CPUE fleet (mt), Total 
Effort CPUE fleet, Percentage of overall catch 
by member (across all fleets/gears); and (2nd 
table) Number of records remaining, Number 
removed, Number of records with chub mackerel 
catch >0;  

Yes  Section 2.1 (page 2) 
and Tables 1 (page 6) 
and 2 (page 6)  

2  Conduct a thorough literature review to identify 
key factors (i.e., spatial, temporal, 
environmental, and fisheries variables) that may 
influence CPUE values;  

Yes  Section 2.1 (page 2)  

3  Plot annual/monthly spatial distributions of 
fishing efforts, catch and nominal CPUE to 
determine temporal and spatial resolution for 
CPUE standardization  

Yes  Fig. 1 (pages 10-13)  

4  Make scatter plots (for continuous variables) 
and/or box plots (for categorical variables) and 
present correlation matrix if possible to evaluate 
correlations between each pair of those 
variables;  

Yes  Fig. 2 (page 14)  

5  Describe selected explanatory variables based on 
(2)-(4) to develop full model for the CPUE 
standardization;  

Yes  Section 2.2. (pages 2-3) 
and Table 3 (page 7)  

6  Specify model type and software (packages) and 
fit the data to the assumed statistical models (i.e., 
GLM, GAM, Delta-lognormal GLM, Neural 
Networks, Regression Trees, Habitat based 
models, and Statistical habitat based models);  

Yes  Section 2.2. (pages 2-
3)  

7  Evaluate and select the best model(s) using 
methods such as likelihood ratio test, 
information criterions, cross validation etc.;  

Yes  Section 3. (page 4) 

8  Provide diagnostic plots to support the chosen 
model is appropriate and assumption are met 
(QQ plot and residual plots along with predicted 
values and important explanatory variables, 
etc.);  

Yes  Figs. 3 (page 15) and 4 
(pages 16-19)  

9  Present estimated values of parameters and 
uncertainty in the parameters in table;  

Yes  Table 4 (pages 7-9)  

10  Present the relationship between the response 
variable and the explanatory variables. Check if 
it is interpretable.  

Yes  Fig. 5 (pages 20-23)  
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11  Extract yearly standardized CPUE and standard 
error by a method that is able to account for 
spatial heterogeneity of effort, such as least 
squares mean or expanded grid. If the model 
includes area and the size of spatial strata differs 
or the model includes interactions between time 
and area, then standardized CPUE should be 
calculated with area weighting for each time 
step. Model with interactions between area and 
season or month requires careful consideration 
on a case by case basis. Provide details on how 
the CPUE index was extracted.  

Yes  Section 2.3. (page 3)  

12  Calculate uncertainty (SD, CV, CI) for 
standardized CPUE for each year. Provide 
detailed explanation on how the uncertainty was 
calculated;  

Yes  Table 5 (page 9) and 
Fig. 6 (page 24)  

13  Provide a table and a plot of nominal and 
standardized CPUEs over time. When the trends 
between nominal and standardized CPUE are 
largely different, explain the reasons (e.g. spatial 
shift of fishing efforts), whenever possible.  

Yes  
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