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1 Introduction
The objective of these analyses were to develop species distribution models for VME indicator taxa in the
Cobb-Eickelberg seamount chain (Figure 1). These models were developed using survey data collected in
2022 and tested against survey data collected in 2024. The species distributions will be used to assess risk of
VME impacts by fishing and other human activities on these seamounts.

Historically (1970’s – 1990’s) many of the seamounts in this chain were fished by both domestic (Canadian
and USA) and foreign (Russia, Korea and Japan) fishing fleets. Currently, there is limited fishing at the
seamounts in international waters. The only fishing currently occurring is by the Canadian Sablefish longline
trap fleet. The intersection between deep-sea coral and sponge distribution and fisheries is an ongoing concern
of the North Pacific Fisheries Commission, the Regional Fisheries Management Organization for international
waters of the North Pacific Ocean (www.npfc.int). The NPFC manages fisheries and vulnerable marine
ecosystems (VME’s) to monitor potential significant and adverse impacts on deep sea corals and sponges.
Thus, there is interest in these offshore seamount chains, both in terms of their biological characteristics and
for management issues related to international fisheries.

The data used in this modeling effort were collected during two surveys in 2022 and 2024.The main tool used in
this work was the underwater stereo camera system developed during the Alaska Coral and Sponge Initiative
in 2012-2015. The stereo-camera survey followed a standard protocol outlined in Rooper et al. (2016), with
a target of 15 minutes of on-bottom time for each transect. Images were processed to determine substrate
type, density and size of structure forming invertebrates and density and size of fish species using Sebastes
software (Williams et al. 2015). The visual survey was designed in a robust statistically sound method so
that inferences about the deep-sea coral and sponge communities on seamounts can be made. The survey
used a stratified-random sampling design using depth strata on 5 seamounts (Figure 1). Five depth strata
(0-200 m, 200 – 400 m, 400 – 600 m, 600 – 800 m and 800 -1100).

In total 77 transects were occupied in 2022 (Figure 2). These transects were used to generate models of
species distribution for seven taxonomic groups of VME indicators (Gorgonians, Antipatharians, Reef-building
Scleractinians, Demosponge, Hexactinellid sponge, Pennatulaceans, and Hydrocorals). The models were
tested against the presence and absence data from 58 transects that were occupied in 2024 (Figure 2).

In the following sections each taxanomic group is presented. The template for each of the model presentations
is modified from the ICES PHM advice template (ICES 2020).
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Figure 1: Map of eastern North Pacific Ocean seamounts showing the five seamount complexes where the
Canadian Sablefish fishery operates and where VME indicator taxa distribution was modeled for this study
in bold text (Eickelberg, Warwick, Corn, Cobb and Brown Bear).

2 Vulnerable Marine Indicator Taxa Group: Gorgonians
2.1 Study resolution
2.1.1 Location of the study area (or management region)

This modelling was carried out for five seamounts in the Northeastern Pacific Ocean where fisheries are
managed by the North Pacific Fisheries Commission. The five seamounts are shown in Figure 1 and are part
of the Cobb-Eickelberg seamount chain.

2.1.1.1 Spatial extent of the modelled area The specific seamounts modeled were five North Pacific
Seamounts (Cobb, Brown Bear, Eickelberg, Warwick and Corn). Modeling was conducted from depths of 0 -
1250 m. Data was collected from 0 to ~850 m.

2.1.1.2 Spatial resolution of the model and independent variables The spatial resolution of the
modeling was 100 m by 100 m grid cells. The all data was projected into an Albers equal area projection (proj4
description = “+proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs”).

2.1.1.3 Spatial precision (of observations and independent variables) The spatial precision of
the observations was taken from the gps mounted on the research vessel. Based on tracking information, the
camera system was towed slightly behind the vessel (~200 m typically), but along the same path as the vessel.
The anticipated precision of the varation of the camera path was expected to be less than 20 m across the
trackline.
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Figure 2: Map of survey transect locations in 2022 and 2024 at eastern North Pacific Ocean seamounts where
the Canadian Sablefish fishery operates (Eickelberg, Warwick, Corn, Cobb and Brown Bear).

2.1.1.4 Depth resolution/range/extent (of the observations and independent variables) The
depth range of the observations of Gorgonians (from the depth sensor mounted on the camera) was from 61
to 808 m (mean = 442 m, SE = 206.28). The depth range of the modeled area was from 34 (the summit
depth of Cobb Seamount) to 1250 m.

2.1.2 Temporal extent of the data

2.1.2.1 Dates of data extent The dates observations used in model development were collected were
September 6, 2022 to September 20, 2022. The dates for observations used for model testing were from
September 3, 2024 to September 11, 2024.

2.1.2.2 Precision of date/time The precision of the date and the time of the data was assumed to be
the closest second.

2.1.2.3 Data/time resolution The resolution of the date and time was fraction of a second.

2.1.2.4 Impacts over time to consider in the data set (e.g. historical fishing effort) Fishing
occurred over the entire time frame from which these data points were collected. Fishing also has occured
historically since the 1970’s. We did not attempt to account for historical fishing effort over this time. There
may have been climate impacts occurring over the time frame of the data observations as well, however, these
were not accounted for in the analyses.
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2.2 Dependent data
The dependent data are shown in Figure 3.

Table 1. Number of records for each taxonomic grouping in the order Gorgonians from the survey database.

Species or Taxa group Count
15 Swiftia 342
5 Keratoisididae 303
9 Paragorgiidae 209
14 Primnoidae 140
11 Plexauridae 105
10 Parastenella 102
2 Gorgonacea 38
3 Isidella 24
7 Paragorgia 11
4 Isidella tentaculum 9
1 Acanthogorgiidae 1
6 Keratoisis 1
8 Paragorgia stephencairnsi 1
12 Plumarella superba 1
13 Primnoa pacifica 1

2.2.1 Data type (presence, absence, abundance)

The data used for modeling Gorgonians distribution were observed presences (n = 68) and absences (n = 9)
that occurred at the five seamounts.

2.2.2 Data source (e.g. type of survey(s) combined)

The data were entirely from random stratified surveys of the Cobb-Eickelberg seamount chain conducted in
2022.

2.2.3 Measure of sampling effort

Sampling effort was estimated by the distance the camera traveled along each transect multiplied by the field
of view observed along the transect (Rooper et al. 2016). This provided an area observed for each transect
which was used as the effort measure. Area observed ranged from 254 to 2469 with a median area observed
of 1197.

2.2.4 Detectability

Detectability of the width of the viewing area of the camera along the transect (area observed) was assumed
to be 100% for VME indicator taxa. However, there were likely some individuals that were too small to be
detected.

2.2.5 Taxonomic level

The taxonomic level modeled here was the taxonomic group Gorgonians (see Table 1 for individual families
included in this grouping and refer to CMM for NPFC definitions).

2.2.6 Functional attributes (its ecology)

Gorgonians are a diverse, long-lived and fragile species. They occur in deep-water and are habitat forming
structures important to many fishes, invertebrates other taxonomic groups.
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2.2.7 Taxonomic confidence of species/assemblages

The taxonomic confidence of the assemblage was assumed to be good. Experts experienced in identification
of corals and sponges from visual imagery in the North Pacific Ocean did all the identification and image
analyses.

2.2.8 Rationale for taxonomic/assemblage level modeled

Gorgonians as defined here are a group that shares common habitat requirements and depth distribution.
They are closely related and the order is globally distributed at deep depths. This Order has been previously
modelled using Maximum entropy methods on a global extent and regional extent (Yesson et al., 2017, Chu
et al. 2018, Doherty et al. 2019).

2.2.9 Source of absence data

Absences were observations of no individuals at transects. In total there were 944 absences in the dataset.

2.2.10 Other potential errors or biases in the data

There are some potential sources of error in the data, including errors in positioning of the records, errors in
species identification (including both false positives and false negatives).

2.2.11 Data filtering steps

No data filtering was conducted.

2.2.12 Taxonomic aggregation steps

The records for the Order Gorgonians were aggregated by transect into presence or absence observations.

2.2.13 Method for combining dependent data sources (if done outside the modelling)

No other dependent data sources were used in this modelling.

2.3 Independent data
2.3.1 Independent data (environmental variables used)

Five independent variables were used in building a model of Gorgonians distribution; bathymetry, topographic
position index, seafloor slope, Oxygen concentration and northness (Figure 4).

2.3.2 Independent data source (source of raw or derived data)

The bathymetry used here was downloaded from the NOAA website (https://www.ncei.noaa.gov/maps/
bathymetry/). It consists of gridded bathymetry from a multibeam sources on a 3 arc-second grid for the
region of interest. The details of the data sources can be found on the NOAA website. There were some gaps in
the NOAA bathymetry layers. These were filled using single beam echosounder data collected during the 2022
and 2024 cruises and GEBCO bathymetry (www.gebco.net/data_and_products/gridded_bathymetry_data).
The single beam echosounder data and GEBCO bathymetry was sampled into the missing grids in the NOAA
bathymetry, with preference to the single beam echosounder data.

From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). Slope was calculated from the nearest 8 neighbors and TPI was calculated
with a focal distance of ~300 m.

Northness was calculated as the cosine of the aspect (direction relative to 0 degrees that the slope was facing)
for each grid cell based on bathymetry.

7

https://www.ncei.noaa.gov/maps/bathymetry/
https://www.ncei.noaa.gov/maps/bathymetry/


PRELIM
IN

ARY

Oxygen data were based on the World Ocean Atlas data (2018 update). These data were clipped to the
area of interest and resampled into the bathymetry grid using bilinear interpolation. The five explanatory
variables are shown in Figure 4.

2.3.3 Native spatial and temporal resolution of the independent data

The native spatial resolution of the NOAA bathymetry was 3 arc-second grid. The native spa-
tial resolution for the Oxygen data was 0.5 degrees longitude and latitude. It should be noted
that the Oxygen data sources are conglomerations of data collected over varying spatial and tem-
poral scales (e.g. the temporal scale is since ~1900’s in the case of some measurements). For
complete documentation of the spatial and temporal scale of the raw data the NODC respective
website should be consulted (www.gebco.net/data_and_products/gridded_bathymetry_data and
https://www.nodc.noaa.gov/OC5/woa18/).

All independent data layers were trimmed to include only observations and explanatory variables from this
region and to depths of 1250 m.

2.3.4 Data processing and scaling (method for downscaling or aggregation)

Both the bathymetry (for gap filling) and oxygen layers were downscaled to a 100 m by 100 m grid in order
to match the scale of the bathymetry. This downscaling was completed using bilinear interpolation.

2.3.4.1 Goodness of fit for downscaled aggregated data The downscaled data at the dependent
data sites for both Oxygen and bathymetry represented the lower resolution very well (r > 0.9).

2.3.4.2 Measurement errors and bias Measurement errors in the data or bias in the data were not
accounted for beyond the processing conducted on the raw measurements by GEBCO or NODC.

2.3.5 Derivation methods and calculations for derived variables

From the bathymetry three derived variables (aspect, slope and topographic position index) were calculated
using the raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see
below) to a 100 m by 100 m grid. The aspect variable was then converted to northness using a cosine function.

2.3.6 Rationale for inclusion of independent variables clearly stated and ecologically relevant

These five variables (depth, slope, topographic position index, northness and oxygen) have been found in
previous studies to influence the distribution of Gorgonians (Huff et al., 2013, Yesson et al., 2017, Etnoyer et
al., 2018).

2.4 Modelling approach
In this study generalized additive models (GAM) were developed to predict species distribution (Wood 2006).

2.4.1 Model steps

2.4.1.1 Code for model provided The code and data used for this model are not currently publicly
available, but can be availabe on request from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

2.4.1.2 Packages used are referenced The packages used to develop this model are referenced in the
above .Rmd file. The key packages used were “sf”, “rnaturalearth”,“ggplot2”,“rgdal”,“rgeos”,“gstat”,“raster”,“mgcv”
and are all available for download from CRAN. The R version used here was R version 3.6.0 (2019-04-26) –
“Planting of a Tree” (R Core Development Team 2019).

2.4.1.3 Data is made available as supplementary material The independent variables are available
from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).
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2.4.2 Biases (spatial, temporal and other) acknowledged and described

There were no inherent biases in the modeling method (although there may be biases in the dependent and
independent data described above).

2.4.3 Methods and approaches to collinearity in independent variables

2.4.3.1 Collinearity in independent variables The five explanatory variables were examined for
collinearity using a pearson correlations (Figure 5). Variance inflation inflation factors (Zuur et al. 2002)
were also examined. In both cases the values were low, suggesting that the variables were fairly independent
of each other.

Table 2. Variance inflation factors for independent variables using in modeling.

Variable VIF
Depth 3.592
Slope 1.231
TPI 1.091
Oxygen 3.372
Northness 1.065

2.4.3.2 Criteria for variable/dimension reduction provided None of the variance inflation factors
exceeded 5, indicating that dimension reduction was not warranted.

2.4.4 Choice of modelling method is explained and justified

The modelling method chosen was a generalized additive model (GAM). This model was primarily chosen for
its simplicity of assumptions (stated below), its usefulness in fitting binomial (presence-absence) data, and
the many previous applications of this method to predicting species distributions.

2.4.4.1 Modelling assumptions are clearly stated The basic GAM assumptions are; 1) Independence
among data points, 2) The distribution of the residuals is binomially distributed, 3) homogenous variance
across the fitted values, and 4) a non-linear relationship between response and predictor.

2.4.4.2 Potential violations of model assumptions are explored Diagnostic plots of Pearson
residuals are shown in Figure 6. The residuals did not indicate any serious violations of GAM assumptions.

2.4.5 Model application

To build the model of Gorgonians a generalized additive model was constructed that contained five explanatory
variables (depth, slope, topographic position index, northness and oxygen). The dependent data was presence
or absence of Gorgonians. The full model was

y = α + s(depth) + s(slope) + s(TPI) + s(northness) + s(O2) + σ

A binomial error distribution (σ) was used for the model fitting. A full model was fit initially containing all
the variables with a basis degrees of freedom of 4 for each smooth. This model was reduced sequentially by
removing the least significant term and comparing the AIC for the resulting reduced model following the
methods of Rooper et al. (2016). This was repeated until there was a decline in model skill when removing a
variable.

2.4.5.1 Model settings The default GAM settings in R were used (see CobbSDM_Gorgonian.Rmd).
The only setting that was modified was the specification of the binomial error distribution and the specified
number of knots for the smooth of k = 4.
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2.4.5.2 Model complexity is assessed The results of the sequential variable reduction resulted in the
retention of 2 terms; depth, TPI. The deviance explained by the model (D2) was 0.119.

The model complexity was assessed against simpler models with less terms during the sequential variable
reduction step and the most complex model (containing these terms) was found to be the most appropriate
(Table 3).

Table 3. Summary of GAM model predicting presence or absence ofGorgonians.

Term edf F p-value
depth 1.073 4.391 0.0534
TPI 1.000 3.639 0.0565
residual 73.927
GCV -0.285
Deviance explained (%) 11.900

2.4.6 Model response curves are generated (where appropriate) and compared to expectations

Model response curves are shown in Figure 7. Probability of presence of Gorgonians was highest above 600
m depth was less when TPI values were < 0 (indicating “valleys” or low points in the topography). None of
the results were abnormal or unexpected.

2.4.6.1 Modelling method-specific term estimates or coefficients are reported (where relevant)
The model specific term estimates are provided in Table 4.

Table 4. Model coefficients, significance and standard error estimates for GAM predicting Gorgonians
probability of presence.

x
(Intercept) 2.406
s(depth).1 -0.058
s(depth).2 0.101
s(depth).3 0.939
s(TPI).1 0.000
s(TPI).2 0.000
s(TPI).3 0.786

2.4.6.2 Independent variable importance is reported The relative importance of variables in the
model was measured by sequentially removing the individual variables, fitting a new model and calculating
the deviance explained. The deviance explained was then scaled to the full model to determine the relative
drop in model goodness-of-fit with removal of each variable. The results showed that TPI was the least
important variable determining the probability of Gorgonians presence, and depth was the most important
(Figure 8).

2.5 Model uncertainty
2.5.1 Model specific goodness of fit statistics have been checked and reported

The Gorgonians model AUC was 0.737, a good model according to the standards of Hosmer et al., (2013).

Using a threshold of 0.82 resulted in prediction of 54 of the 68 observed presences correctly, while predicting
about 67% of the absences correctly (sensitivity = 0.794 and specificity = 0.667)

Table 5. Confusion matrix of predicted and observed presence and absence of Gorgonians using a probability
threshold 0.82.
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Observed
Predicted Presence Absence
Presence 54 3
Absence 14 6

2.5.1.1 Multiple measures of goodness of fit have been examined Commonly used goodness-of-fit
measures for binomial models are provided in Table 5 for the GLM predicting Gorgonians probability of
presence. These include the True Skill Statistic (Allouche et al., 2006), the root-mean-squared-error and the
Spearman’s rank correlation. Other threshold dependent metrics can be calculated from the confusion matrix
(Table 4).

Model diagnostics indicated some minor issues with the prediction of presence or absence (Figure 9).The
predicted occurrence did not always include the 1:1 line (indicating that at some levels of probability the
observed occurrences were lower than expected). For example, the model predicted lower than expected
probability of presence at ~0.3-0.4 and higher than expected probability of occurrence at ~0.6-0.8.

2.5.2 Spatial autocorrelation in the residuals has been assessed and reported

There was not significant spatial autocorrelation in the model residuals measured by Moran’s I (I = 0.377).
This was not unexpected given the random-stratified sample design of observations in the study area.

2.5.3 Residuals have been tested against assumed distribution (where appropriate)

Not applicable for the binomial distribution. Figure 6 shows model residuals (on the logit scale are shown for
each data point used to model Gorgonians and diagnostics.

2.5.3.1 Spatial patterns in residuals Model residuals are shown in Figure 10. This confirms the results
of the Moran’s I, with little evidence of spatial patterns in the residuals.

2.6 Model validation
2.6.1 Training and testing data splitting method

Both internal model validation method and independent data was used as a validation data set. K-fold
cross-validation was used here. Five (k) folds were chosen at random.

2.6.1.1 Potential spatial biases were accounted for in splitting the data The spatial blocking
method (Valvani et al., 2019) was not used to split the data for the internal cross-validation.

2.6.1.2 A standard method used for cross-validation k-fold cross-validation is a standard method.
The data was divided into 5 equal portions and a model then fit to 80% of the data and tested against
the remaining 20% of the data. This was repeated for each subdivision of the data. The same maps and
diagnostics were produced for each model fit on the k-folds.

The data folds appeared to show the same patterns as the full model.

The model performance was similar for all the training data sets (the full model and the individual folds).
However the performance of the model on the testing folds was less impressive. For example, the True
Skill Statistic and AUC for model folds 3-5 was very poor, indicating some potential issues with model
performance.
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2.6.2 Truly independent data used for model validation

The presence and absence observations from 58 transects completed in 2024 was also used to test the models
developed on the 2022 survey data.

The Gorgonians model AUC was 0.793, an good performing model according to the standards of Hosmer et
al., (2013).

Using a threshold of 0.82, 0.82 resulted in prediction of 27 of the 29 observed presences correctly, while
predicting about 59% of the absences correctly (sensitivity = 0.931 and specificity = 0.586)

Table 6. Confusion matrix of predicted and observed presence and absence of Gorgonians using a probability
threshold 0.82, 0.82 for the independently collected data set in 2024.

Observed
Predicted Presence Absence
Presence 27 12
Absence 2 17

Table 6. Model goodness of fit measures for the full model and the individual model validation folds

Fold AIC threshold AUC_training AUC_testing TSS_training TSS_testing
Full model 55.088 0.82 0.737 NA 0.461 NA
Fold_1 50.503 0.80 0.602 1.00 0.282 0.857
Fold_2 48.161 0.75 0.679 0.60 0.406 0.000
Fold_3 20.988 0.93 0.966 0.63 0.898 0.111
Fold_4 51.455 0.70 0.716 NaN 0.387 NaN
Fold_5 49.991 0.83 0.632 1.00 0.259 0.714

Fold Cor_training Cor_testing RMSE_training RMSE_testing
Full model 0.264 NA 0.302 NA
Fold_1 0.118 0.433 0.331 0.235
Fold_2 0.210 -0.084 0.323 0.257
Fold_3 0.347 0.220 0.173 0.605
Fold_4 0.265 NA 0.328 0.176
Fold_5 0.153 0.433 0.330 0.242

2.7 Model outputs
2.7.1 Maps of model predictions, model residuals and prediction error

Maps of model predictions are provided in Figure 12. Maps of residuals in Figure 10. Maps of prediction
error in Figure 13. The model predicted that the highest probability of presence for Gorgonians was in a
band from 600 m and deeper.

2.7.2 Areas of model extrapolation are clearly defined

The model was not extrapolated outside the five seamounts, although within this region, there were some
areas with little or no sampling. The model was extrapolated at depths from 850 - 1250 m where no sampling
occurred.
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2.7.3 The prediction unit is clearly defined (and explained if necessary)

The prediction unit is the probability of presence or absence of Gorgonians.

2.7.4 Thresholding methods (for dichotomising probability into presence or absence) are
clearly described and appropriate

No thresholding was done (beyond the thresholding for calculating goodness-of-fit measures). Probability of
presence is presented as the result.

2.7.4.1 The sensitivity of model outcomes to threshold value chosen has been explored
Sensitivity to threshold values was not explored, but in a formal analysis of the model could be completed
using the provided model outputs.

2.8 Conclusions
The Gorgonians model fit the observations from 2022 well. The internal model validation showed robust
results. The independently collected data were predicted with good accuracy.

Model response curves showed the importance of depth. At depths below 600 m, there was a high probability
of Gorgonians presence at all seamounts on a randomly chosen transect.
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Figure 5: Correlation among independent variables used in modeling.
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Figure 6: Diagnostic plots for GAM model assumptions.
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Figure 7: Response curves for independent variables used best-fitting GAM for presence or absence.
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Figure 8: Relative importance of variables included in the Gorgonian presence or absence GAM measured by
their contribution to deviance explained when sequentially removed from the model.
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Figure 9: Model diagnostic plots for Gorgonian presence or absence GAM.
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3 Vulnerable Marine Indicator Taxa Group: Antipatharians
3.1 Study resolution
3.1.1 Location of the study area (or management region)

This modelling was carried out for five seamounts in the Northeastern Pacific Ocean where fisheries are
managed by the North Pacific Fisheries Commission. The five seamounts are shown in Figure 1 and are part
of the Cobb-Eickelberg seamount chain.

3.1.1.1 Spatial extent of the modelled area The specific seamounts modeled were five North Pacific
Seamounts (Cobb, Brown Bear, Eickelberg, Warwick and Corn). Modeling was conducted from depths of 0 -
1250 m. Data was collected from 0 to ~850 m.

3.1.1.2 Spatial resolution of the model and independent variables The spatial resolution of the
modeling was 100 m by 100 m grid cells. The all data was projected into an Albers equal area projection (proj4
description = “+proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs”).

3.1.1.3 Spatial precision (of observations and independent variables) The spatial precision of
the observations was taken from the gps mounted on the research vessel. Based on tracking information, the
camera system was towed slightly behind the vessel (~200 m typically), but along the same path as the vessel.
The anticipated precision of the varation of the camera path was expected to be less than 20 m across the
trackline.

3.1.1.4 Depth resolution/range/extent (of the observations and independent variables) The
depth range of the observations of Antipatharians (from the depth sensor mounted on the camera) was from
61 to 808 m (mean = 442 m, SE = 206.28). The depth range of the modeled area was from 34 (the summit
depth of Cobb Seamount) to 1250 m.

3.1.2 Temporal extent of the data

3.1.2.1 Dates of data extent The dates observations used in model development were collected were
September 6, 2022 to September 20, 2022. The dates for observations used for model testing were from
September 3, 2024 to September 11, 2024.

3.1.2.2 Precision of date/time The precision of the date and the time of the data was assumed to be
the closest second.

3.1.2.3 Data/time resolution The resolution of the date and time was fraction of a second.

3.1.2.4 Impacts over time to consider in the data set (e.g. historical fishing effort) Fishing
occurred over the entire time frame from which these data points were collected. Fishing also has occured
historically since the 1970’s. We did not attempt to account for historical fishing effort over this time. There
may have been climate impacts occurring over the time frame of the data observations as well, however, these
were not accounted for in the analyses.

3.2 Dependent data
The dependent data are shown in Figure 14.

Table 1. Number of records for each taxonomic grouping in the order Antipatharians from the survey database.
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Species or Taxa group Count
1 Antipatharia 206
2 Aphanostichopathes spiessi 149
9 Schizopathidae 60
8 Parantipathes 50
4 Bathypathes sp 15
3 Bathypathes patula 10
7 Cladopathidae 2
5 Chrysopathes 1
6 Chrysopathes speciosa 1

3.2.1 Data type (presence, absence, abundance)

The data used for modeling Antipatharians distribution were observed presences (n = 17) and absences (n =
60) that occurred at the five seamounts.

3.2.2 Data source (e.g. type of survey(s) combined)

The data were entirely from random stratified surveys of the Cobb-Eickelberg seamount chain conducted in
2022.

3.2.3 Measure of sampling effort

Sampling effort was estimated by the distance the camera traveled along each transect multiplied by the field
of view observed along the transect (Rooper et al. 2016). This provided an area observed for each transect
which was used as the effort measure. Area observed ranged from 254 to 2469 mˆ2 with a median area
observed of 1197 mˆ2.

3.2.4 Detectability

Detectability of the width of the viewing area of the camera along the transect (area observed) was assumed
to be 100% for VME indicator taxa. However, there were likely some individuals that were too small to be
detected.

3.2.5 Taxonomic level

The taxonomic level modeled here was the taxonomic group Antipatharians (see Table 1 for individual families
included in this grouping and refer to CMM for NPFC definitions).

3.2.6 Functional attributes (its ecology)

Antipatharians are a diverse, long-lived and fragile species. They occur in deep-water and are habitat forming
structures important to many fishes, invertebrates other taxonomic groups.

3.2.7 Taxonomic confidence of species/assemblages

The taxonomic confidence of the assemblage was assumed to be good. Experts experienced in identification
of corals and sponges from visual imagery in the North Pacific Ocean did all the identification and image
analyses.

3.2.8 Rationale for taxonomic/assemblage level modeled

Antipatharians as defined here are a group that shares common habitat requirements and depth distribution.
They are closely related and the order is globally distributed at deep depths. This Order has been previously
modelled using Maximum entropy methods on a global extent and regional extent (Yesson et al., 2017, Chu
et al. 2018, Doherty et al. 2019).
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3.2.9 Source of absence data

Absences were observations of no individuals at transects. In total there were 60 absences in the dataset.

3.2.10 Other potential errors or biases in the data

There are some potential sources of error in the data, including errors in positioning of the records, errors in
species identification (including both false positives and false negatives).

3.2.11 Data filtering steps

No data filtering was conducted.

3.2.12 Taxonomic aggregation steps

The records for the Order Antipatharians were aggregated by transect into presence or absence observations.

3.2.13 Method for combining dependent data sources (if done outside the modelling)

No other dependent data sources were used in this modelling.

3.3 Independent data
3.3.1 Independent data (environmental variables used)

Five independent variables were used in building a model of Antipatharians distribution; bathymetry,
topographic position index, seafloor slope, Oxygen concentration and northness (Figure 15).

3.3.2 Independent data source (source of raw or derived data)

The bathymetry used here was downloaded from the NOAA website (https://www.ncei.noaa.gov/maps/
bathymetry/). It consists of gridded bathymetry from a multibeam sources on a 3 arc-second grid for the
region of interest. The details of the data sources can be found on the NOAA website. There were some gaps in
the NOAA bathymetry layers. These were filled using single beam echosounder data collected during the 2022
and 2024 cruises and GEBCO bathymetry (www.gebco.net/data_and_products/gridded_bathymetry_data).
The single beam echosounder data and GEBCO bathymetry was sampled into the missing grids in the NOAA
bathymetry, with preference to the single beam echosounder data.

From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). Slope was calculated from the nearest 8 neighbors and TPI was calculated
with a focal distance of ~300 m.

Northness was calculated as the cosine of the aspect (direction relative to 0 degrees that the slope was facing)
for each grid cell based on bathymetry.

Oxygen data were based on the World Ocean Atlas data (2018 update). These data were clipped to the
area of interest and resampled into the bathymetry grid using bilinear interpolation. The five explanatory
variables are shown in Figure 15.

3.3.3 Native spatial and temporal resolution of the independent data

The native spatial resolution of the NOAA bathymetry was 3 arc-second grid. The native spa-
tial resolution for the Oxygen data was 0.5 degrees longitude and latitude. It should be noted
that the Oxygen data sources are conglomerations of data collected over varying spatial and tem-
poral scales (e.g. the temporal scale is since ~1900’s in the case of some measurements). For
complete documentation of the spatial and temporal scale of the raw data the NODC respective
website should be consulted (www.gebco.net/data_and_products/gridded_bathymetry_data and
https://www.nodc.noaa.gov/OC5/woa18/).
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All independent data layers were trimmed to include only observations and explanatory variables from this
region and to depths of 1250 m.

3.3.4 Data processing and scaling (method for downscaling or aggregation)

Both the bathymetry (for gap filling) and oxygen layers were downscaled to a 100 m by 100 m grid in order
to match the scale of the bathymetry. This downscaling was completed using bilinear interpolation.

3.3.4.1 Goodness of fit for downscaled aggregated data The downscaled data at the dependent
data sites for both Oxygen and bathymetry represented the lower resolution very well (r > 0.9).

3.3.4.2 Measurement errors and bias Measurement errors in the data or bias in the data were not
accounted for beyond the processing conducted on the raw measurements by GEBCO or NODC.

3.3.5 Derivation methods and calculations for derived variables

From the bathymetry three derived variables (aspect, slope and topographic position index) were calculated
using the raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see
below) to a 100 m by 100 m grid. The aspect variable was then converted to northness using a cosine function.

3.3.6 Rationale for inclusion of independent variables clearly stated and ecologically relevant

These five variables (depth, slope, topographic position index, northness and oxygen) have been found in
previous studies to influence the distribution of Antipatharians (Huff et al., 2013, Yesson et al., 2017, Etnoyer
et al., 2018).

3.4 Modelling approach
In this study generalized additive models (GAM) were developed to predict species distribution (Wood 2006).

3.4.1 Model steps

3.4.1.1 Code for model provided The code and data used for this model are not currently publicly
available, but can be availabe on request from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

3.4.1.2 Packages used are referenced The packages used to develop this model are referenced in the
above .Rmd file. The key packages used were “sf”, “rnaturalearth”,“ggplot2”,“rgdal”,“rgeos”,“gstat”,“raster”,“mgcv”
and are all available for download from CRAN. The R version used here was R version 3.6.0 (2019-04-26) –
“Planting of a Tree” (R Core Development Team 2019).

3.4.1.3 Data is made available as supplementary material The independent variables are available
from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

3.4.2 Biases (spatial, temporal and other) acknowledged and described

There were no inherent biases in the modeling method (although there may be biases in the dependent and
independent data described above).

3.4.3 Methods and approaches to collinearity in independent variables

3.4.3.1 Collinearity in independent variables The five explanatory variables were examined for
collinearity using a pearson correlations (Figure 16). Variance inflation inflation factors (Zuur et al. 2002)
were also examined. In both cases the values were low, suggesting that the variables were fairly independent
of each other.

Table 2. Variance inflation factors for independent variables using in modeling.
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Variable VIF
Depth 3.592
Slope 1.231
TPI 1.091
Oxygen 3.372
Northness 1.065

3.4.3.2 Criteria for variable/dimension reduction provided None of the variance inflation factors
exceeded 5, indicating that dimension reduction was not warranted.

3.4.4 Choice of modelling method is explained and justified

The modelling method chosen was a generalized additive model (GAM). This model was primarily chosen for
its simplicity of assumptions (stated below), its usefulness in fitting binomial (presence-absence) data, and
the many previous applications of this method to predicting species distributions.

3.4.4.1 Modelling assumptions are clearly stated The basic GAM assumptions are; 1) Independence
among data points, 2) The distribution of the residuals is binomially distributed, 3) homogenous variance
across the fitted values, and 4) a non-linear relationship between response and predictor.

3.4.4.2 Potential violations of model assumptions are explored Diagnostic plots of Pearson
residuals are shown in Figure 17. The residuals did not indicate any serious violations of GAM assumptions.

3.4.5 Model application

To build the model of Antipatharians a generalized additive model was constructed that contained five
explanatory variables (depth, slope, topographic position index, northness and oxygen). The dependent data
was presence or absence of Antipatharians. The full model was

y = α + s(depth) + s(slope) + s(TPI) + s(northness) + s(O2) + σ

A binomial error distribution (σ) was used for the model fitting. A full model was fit initially containing all
the variables with a basis degrees of freedom of 4 for each smooth. This model was reduced sequentially by
removing the least significant term and comparing the AIC for the resulting reduced model following the
methods of Rooper et al. (2016). This was repeated until there was a decline in model skill when removing a
variable.

3.4.5.1 Model settings The default GAM settings in R were used (see CobbSDM_Antipatharia.Rmd).
The only setting that was modified was the specification of the binomial error distribution and the specified
number of knots for the smooth of k = 4.

3.4.5.2 Model complexity is assessed The results of the sequential variable reduction resulted in the
retention of 2 terms; depth, TPI. The deviance explained by the model (D2) was 0.512.

The model complexity was assessed against simpler models with less terms during the sequential variable
reduction step and the most complex model (containing these terms) was found to be the most appropriate
(Table 3).

Table 3. Summary of GAM model predicting presence or absence of Antipatharians.

Term edf F p-value
depth 2.893 11.984 0.0058
TPI 1.000 2.938 0.0865
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Term edf F p-value
residual 72.107
GCV -0.358
Deviance explained (%) 51.200

3.4.6 Model response curves are generated (where appropriate) and compared to expectations

Model response curves are shown in Figure 18. Probability of presence of Antipatharians was highest at
about 350 m depth and above 600 m depth was also higher when TPI values were < 0 (indicating “valleys”
or low points in the topography). None of the results were abnormal or unexpected.

3.4.6.1 Modelling method-specific term estimates or coefficients are reported (where relevant)
The model specific term estimates are provided in Table 4.

Table 4. Model coefficients, significance and standard error estimates for GAM predicting Antipatharians
probability of presence.

x
(Intercept) -3.250
s(depth).1 -15.325
s(depth).2 9.587
s(depth).3 15.140
s(TPI).1 0.000
s(TPI).2 0.000
s(TPI).3 -0.783

3.4.6.2 Independent variable importance is reported The relative importance of variables in the
model was measured by sequentially removing the individual variables, fitting a new model and calculating
the deviance explained. The deviance explained was then scaled to the full model to determine the relative
drop in model goodness-of-fit with removal of each variable. The results showed that TPI was the least
important variable determining the probability of Antipatharians presence, and depth was the most important
(Figure 19).

3.5 Model uncertainty
3.5.1 Model specific goodness of fit statistics have been checked and reported

The Antipatharians model AUC was 0.936, an excellent model according to the standards of Hosmer et al.,
(2013).

Using a threshold of 0.275 resulted in prediction of 15 of the 17 observed presences correctly, while predicting
about 93% of the absences correctly (sensitivity = 0.882 and specificity = 0.933)

Table 5. Confusion matrix of predicted and observed presence and absence of Antipatharians using a
probability threshold 0.275.

Observed
Predicted Presence Absence
Presence 15 4
Absence 2 56
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3.5.1.1 Multiple measures of goodness of fit have been examined Commonly used goodness-of-fit
measures for binomial models are provided in Table 5 for the GLM predicting Antipatharians probability of
presence. These include the True Skill Statistic (Allouche et al., 2006), the root-mean-squared-error and the
Spearman’s rank correlation. Other threshold dependent metrics can be calculated from the confusion matrix
(Table 4).

Model diagnostics indicated no issues with the prediction of presence or absence (Figure 20).The predicted
occurrence always included the 1:1 line.

3.5.2 Spatial autocorrelation in the residuals has been assessed and reported

There was not significant spatial autocorrelation in the model residuals measured by Moran’s I (I = 0.702).
This was not unexpected given the random-stratified sample design of observations in the study area.

3.5.3 Residuals have been tested against assumed distribution (where appropriate)

Not applicable for the binomial distribution. Figure 17 shows model residuals (on the logit scale are shown
for each data point used to model Antipatharians and diagnostics.

3.5.3.1 Spatial patterns in residuals Model residuals are shown in Figure 21. This confirms the results
of the Moran’s I, with little evidence of spatial patterns in the residuals.

3.6 Model validation
3.6.1 Training and testing data splitting method

Both internal model validation method and independent data was used as a validation data set. K-fold
cross-validation was used here. Five (k) folds were chosen at random.

3.6.1.1 Potential spatial biases were accounted for in splitting the data The spatial blocking
method (Valvani et al., 2019) was not used to split the data for the internal cross-validation.

3.6.1.2 A standard method used for cross-validation k-fold cross-validation is a standard method.
The data was divided into 5 equal portions and a model then fit to 80% of the data and tested against
the remaining 20% of the data. This was repeated for each subdivision of the data. The same maps and
diagnostics were produced for each model fit on the k-folds.

The data folds appeared to show the same patterns as the full model.

The model performance was similar for all the training data sets (the full model and the individual folds).
However the performance of the model on the testing folds decreased.

3.6.2 Truly independent data used for model validation

The presence and absence observations from 58 transects completed in 2024 was also used to test the models
developed on the 2022 survey data.

The Antipatharians model AUC was 0.826, a good performing model according to the standards of Hosmer et
al., (2013).

Using a threshold of 0.275, 0.275 resulted in prediction of 5 of the 14 observed presences correctly, while
predicting about 100% of the absences correctly (sensitivity = 0.357 and specificity = 1). The model did not
predict presences in the test data set very well (predicting only ~30% correctly).

Table 6. Confusion matrix of predicted and observed presence and absence of Antipatharians using a
probability threshold 0.275, 0.275 for the independently collected data set in 2024.
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Observed
Predicted Presence Absence
Presence 5 0
Absence 9 44

Table 6. Model goodness of fit measures for the full model and the individual model validation folds

Fold AIC threshold AUC_training AUC_testing TSS_training TSS_testing
Full model 49.464 0.275 0.936 NA 0.816 NA
Fold_1 45.228 0.245 0.915 1.000 0.667 0.818
Fold_2 35.234 0.260 0.949 0.883 0.849 0.567
Fold_3 41.724 0.140 0.959 0.932 0.857 0.659
Fold_4 33.910 0.360 0.971 0.933 0.853 0.800
Fold_5 44.830 0.310 0.935 0.808 0.782 0.423

Fold Cor_training Cor_testing RMSE_training RMSE_testing
Full model 0.627 NA 0.281 NA
Fold_1 0.586 0.768 0.310 0.234
Fold_2 0.598 0.644 0.262 0.415
Fold_3 0.648 0.663 0.294 0.394
Fold_4 0.718 0.364 0.251 0.399
Fold_5 0.645 0.363 0.304 0.261

3.7 Model outputs
3.7.1 Maps of model predictions, model residuals and prediction error

Maps of model predictions are provided in Figure 23. Maps of residuals in Figure 21. Maps of prediction
error in Figure 24. The model predicted that the highest probability of presence for Antipatharians was in a
band from 350 m and deeper.

3.7.2 Areas of model extrapolation are clearly defined

The model was not extrapolated outside the five seamounts, although within this region, there were some
areas with little or no sampling. The model was extrapolated at depths from 850 - 1250 m where no sampling
occurred.

3.7.3 The prediction unit is clearly defined (and explained if necessary)

The prediction unit is the probability of presence or absence of Antipatharians.

3.7.4 Thresholding methods (for dichotomising probability into presence or absence) are
clearly described and appropriate

No thresholding was done (beyond the thresholding for calculating goodness-of-fit measures). Probability of
presence is presented as the result.

3.7.4.1 The sensitivity of model outcomes to threshold value chosen has been explored
Sensitivity to threshold values was not explored, but in a formal analysis of the model could be completed
using the provided model outputs.
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3.8 Conclusions
The Antipatharians model fit the observations from 2022 well. The internal model validation showed robust
results. The independently collected data were predicted with good accuracy, although there were some issues
with correctly identifying transects where Antipatharians were observed to be present.

Model response curves showed the importance of depth. At depths below about 350 m, there was a high
probability of Antipatharians presence at all seamounts on a randomly chosen transect.

33



PRELIM
IN

ARY

Fi
gu

re
14

:
Lo

ca
tio

ns
of

pr
es

en
ce

an
d

ab
se

nc
e

tr
an

se
ct

s
fo

r
A

nt
ip

at
ha

ria
ns

fr
om

20
22

an
d

20
24

st
er

eo
-c

am
er

a
su

rv
ey

34



PRELIM
IN

ARY

Fi
gu

re
15

:
M

ap
of

ba
th

ym
et

ry
,s

lo
pe

,T
PI

,O
xy

ge
n

an
d

no
rt

hn
es

s
us

ed
as

ex
pl

an
at

or
y

va
ria

bl
es

in
th

is
an

al
ys

is
of

V
M

E
da

ta

35



PRELIM
IN

ARY

Figure 16: Correlation among independent variables used in modeling.
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Figure 17: Diagnostic plots for GAM model assumptions.
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Figure 18: Response curves for independent variables used best-fitting GAM for presence or absence.
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Figure 19: Relative importance of variables included in the Antipatharia presence or absence GAM measured
by their contribution to deviance explained when sequentially removed from the model.
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Figure 20: Model diagnostic plots for Antipatharia presence or absence GAM.
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4 Vulnerable Marine Indicator Taxa Group: ScleractinianReefs
4.1 Study resolution
4.1.1 Location of the study area (or management region)

This modelling was carried out for five seamounts in the Northeastern Pacific Ocean where fisheries are
managed by the North Pacific Fisheries Commission. The five seamounts are shown in Figure 1 and are part
of the Cobb-Eickelberg seamount chain.

4.1.1.1 Spatial extent of the modelled area The specific seamounts modeled were five North Pacific
Seamounts (Cobb, Brown Bear, Eickelberg, Warwick and Corn). Modeling was conducted from depths of 0 -
1250 m. Data was collected from 0 to ~850 m.

4.1.1.2 Spatial resolution of the model and independent variables The spatial resolution of the
modeling was 100 m by 100 m grid cells. The all data was projected into an Albers equal area projection (proj4
description = “+proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs”).

4.1.1.3 Spatial precision (of observations and independent variables) The spatial precision of
the observations was taken from the gps mounted on the research vessel. Based on tracking information, the
camera system was towed slightly behind the vessel (~200 m typically), but along the same path as the vessel.
The anticipated precision of the varation of the camera path was expected to be less than 20 m across the
trackline.

4.1.1.4 Depth resolution/range/extent (of the observations and independent variables) The
depth range of the observations of ScleractinianReefs (from the depth sensor mounted on the camera) was
from 61 to 808 m (mean = 442 m, SE = 206.28). The depth range of the modeled area was from 34 (the
summit depth of Cobb Seamount) to 1250 m.

4.1.2 Temporal extent of the data

4.1.2.1 Dates of data extent The dates observations used in model development were collected were
September 6, 2022 to September 20, 2022. The dates for observations used for model testing were from
September 3, 2024 to September 11, 2024.

4.1.2.2 Precision of date/time The precision of the date and the time of the data was assumed to be
the closest second.

4.1.2.3 Data/time resolution The resolution of the date and time was fraction of a second.

4.1.2.4 Impacts over time to consider in the data set (e.g. historical fishing effort) Fishing
occurred over the entire time frame from which these data points were collected. Fishing also has occured
historically since the 1970’s. We did not attempt to account for historical fishing effort over this time. There
may have been climate impacts occurring over the time frame of the data observations as well, however, these
were not accounted for in the analyses.

4.2 Dependent data
The dependent data are shown in Figure 25.

Table 1. Number of records for each taxonomic grouping in the order ScleractinianReefs from the survey
database.
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Species or Taxa group Count
Desmophyllum pertusum 3

4.2.1 Data type (presence, absence, abundance)

The data used for modeling ScleractinianReefs distribution were observed presences (n = 7) and absences (n
= 70) that occurred at the five seamounts.

4.2.2 Data source (e.g. type of survey(s) combined)

The data were entirely from random stratified surveys of the Cobb-Eickelberg seamount chain conducted in
2022.

4.2.3 Measure of sampling effort

Sampling effort was estimated by the distance the camera traveled along each transect multiplied by the field
of view observed along the transect (Rooper et al. 2016). This provided an area observed for each transect
which was used as the effort measure. Area observed ranged from 254 to 2469 mˆ2 with a median area
observed of 1197 mˆ2.

4.2.4 Detectability

Detectability of the width of the viewing area of the camera along the transect (area observed) was assumed
to be 100% for VME indicator taxa. However, there were likely some individuals that were too small to be
detected.

4.2.5 Taxonomic level

The taxonomic level modeled here was the taxonomic group ScleractinianReefs (see Table 1 for individual
families included in this grouping and refer to CMM for NPFC definitions).

4.2.6 Functional attributes (its ecology)

ScleractinianReefs are a diverse, long-lived and fragile species. They occur in deep-water and are habitat
forming structures important to many fishes, invertebrates other taxonomic groups.

4.2.7 Taxonomic confidence of species/assemblages

The taxonomic confidence of the assemblage was assumed to be good. Experts experienced in identification
of corals and sponges from visual imagery in the North Pacific Ocean did all the identification and image
analyses.

4.2.8 Rationale for taxonomic/assemblage level modeled

ScleractinianReefs as defined here are a group that shares common habitat requirements and depth distribution.
They are closely related and the order is globally distributed at deep depths. This Order has been previously
modelled using Maximum entropy methods on a global extent and regional extent (Yesson et al., 2017, Chu
et al. 2018, Doherty et al. 2019).

4.2.9 Source of absence data

Absences were observations of no individuals at transects. In total there were 70 absences in the dataset.
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4.2.10 Other potential errors or biases in the data

There are some potential sources of error in the data, including errors in positioning of the records, errors in
species identification (including both false positives and false negatives).

4.2.11 Data filtering steps

No data filtering was conducted.

4.2.12 Taxonomic aggregation steps

The records for the Order ScleractinianReefs were aggregated by transect into presence or absence observations.

4.2.13 Method for combining dependent data sources (if done outside the modelling)

No other dependent data sources were used in this modelling.

4.3 Independent data
4.3.1 Independent data (environmental variables used)

Five independent variables were used in building a model of ScleractinianReefs distribution; bathymetry,
topographic position index, seafloor slope, Oxygen concentration and northness (Figure 26).

4.3.2 Independent data source (source of raw or derived data)

The bathymetry used here was downloaded from the NOAA website (https://www.ncei.noaa.gov/maps/
bathymetry/). It consists of gridded bathymetry from a multibeam sources on a 3 arc-second grid for the
region of interest. The details of the data sources can be found on the NOAA website. There were some gaps in
the NOAA bathymetry layers. These were filled using single beam echosounder data collected during the 2022
and 2024 cruises and GEBCO bathymetry (www.gebco.net/data_and_products/gridded_bathymetry_data).
The single beam echosounder data and GEBCO bathymetry was sampled into the missing grids in the NOAA
bathymetry, with preference to the single beam echosounder data.

From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). Slope was calculated from the nearest 8 neighbors and TPI was calculated
with a focal distance of ~300 m.

Northness was calculated as the cosine of the aspect (direction relative to 0 degrees that the slope was facing)
for each grid cell based on bathymetry.

Oxygen data were based on the World Ocean Atlas data (2018 update). These data were clipped to the
area of interest and resampled into the bathymetry grid using bilinear interpolation. The five explanatory
variables are shown in Figure 26.

4.3.3 Native spatial and temporal resolution of the independent data

The native spatial resolution of the NOAA bathymetry was 3 arc-second grid. The native spa-
tial resolution for the Oxygen data was 0.5 degrees longitude and latitude. It should be noted
that the Oxygen data sources are conglomerations of data collected over varying spatial and tem-
poral scales (e.g. the temporal scale is since ~1900’s in the case of some measurements). For
complete documentation of the spatial and temporal scale of the raw data the NODC respective
website should be consulted (www.gebco.net/data_and_products/gridded_bathymetry_data and
https://www.nodc.noaa.gov/OC5/woa18/).

All independent data layers were trimmed to include only observations and explanatory variables from this
region and to depths of 1250 m.
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4.3.4 Data processing and scaling (method for downscaling or aggregation)

Both the bathymetry (for gap filling) and oxygen layers were downscaled to a 100 m by 100 m grid in order
to match the scale of the bathymetry. This downscaling was completed using bilinear interpolation.

4.3.4.1 Goodness of fit for downscaled aggregated data The downscaled data at the dependent
data sites for both Oxygen and bathymetry represented the lower resolution very well (r > 0.9).

4.3.4.2 Measurement errors and bias Measurement errors in the data or bias in the data were not
accounted for beyond the processing conducted on the raw measurements by GEBCO or NODC.

4.3.5 Derivation methods and calculations for derived variables

From the bathymetry three derived variables (aspect, slope and topographic position index) were calculated
using the raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see
below) to a 100 m by 100 m grid. The aspect variable was then converted to northness using a cosine function.

4.3.6 Rationale for inclusion of independent variables clearly stated and ecologically relevant

These five variables (depth, slope, topographic position index, northness and oxygen) have been found in
previous studies to influence the distribution of ScleractinianReefs (Huff et al., 2013, Yesson et al., 2017,
Etnoyer et al., 2018).

4.4 Modelling approach
In this study generalized additive models (GAM) were developed to predict species distribution (Wood 2006).

4.4.1 Model steps

4.4.1.1 Code for model provided The code and data used for this model are not currently publicly
available, but can be availabe on request from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

4.4.1.2 Packages used are referenced The packages used to develop this model are referenced in the
above .Rmd file. The key packages used were “sf”, “rnaturalearth”,“ggplot2”,“rgdal”,“rgeos”,“gstat”,“raster”,“mgcv”
and are all available for download from CRAN. The R version used here was R version 3.6.0 (2019-04-26) –
“Planting of a Tree” (R Core Development Team 2019).

4.4.1.3 Data is made available as supplementary material The independent variables are available
from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

4.4.2 Biases (spatial, temporal and other) acknowledged and described

There were no inherent biases in the modeling method (although there may be biases in the dependent and
independent data described above).

4.4.3 Methods and approaches to collinearity in independent variables

4.4.3.1 Collinearity in independent variables The five explanatory variables were examined for
collinearity using a pearson correlations (Figure 27). Variance inflation inflation factors (Zuur et al. 2002)
were also examined. In both cases the values were low, suggesting that the variables were fairly independent
of each other.

Table 2. Variance inflation factors for independent variables using in modeling.
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Variable VIF
Depth 3.592
Slope 1.231
TPI 1.091
Oxygen 3.372
Northness 1.065

4.4.3.2 Criteria for variable/dimension reduction provided None of the variance inflation factors
exceeded 5, indicating that dimension reduction was not warranted.

4.4.4 Choice of modelling method is explained and justified

The modelling method chosen was a generalized additive model (GAM). This model was primarily chosen for
its simplicity of assumptions (stated below), its usefulness in fitting binomial (presence-absence) data, and
the many previous applications of this method to predicting species distributions.

4.4.4.1 Modelling assumptions are clearly stated The basic GAM assumptions are; 1) Independence
among data points, 2) The distribution of the residuals is binomially distributed, 3) homogenous variance
across the fitted values, and 4) a non-linear relationship between response and predictor.

4.4.4.2 Potential violations of model assumptions are explored Diagnostic plots of Pearson
residuals are shown in Figure 28. The residuals did not indicate any serious violations of GAM assumptions.

4.4.5 Model application

To build the model of ScleractinianReefs a generalized additive model was constructed that contained five
explanatory variables (depth, slope, topographic position index, northness and oxygen). The dependent data
was presence or absence of ScleractinianReefs. The full model was

y = α + s(depth) + s(slope) + s(TPI) + s(northness) + s(O2) + σ

A binomial error distribution (σ) was used for the model fitting. A full model was fit initially containing all
the variables with a basis degrees of freedom of 4 for each smooth. This model was reduced sequentially by
removing the least significant term and comparing the AIC for the resulting reduced model following the
methods of Rooper et al. (2016). This was repeated until there was a decline in model skill when removing a
variable.

4.4.5.1 Model settings The default GAM settings in R were used (see CobbSDM_ScleractinianReef.Rmd).
The only setting that was modified was the specification of the binomial error distribution and the specified
number of knots for the smooth of k = 4.

4.4.5.2 Model complexity is assessed The results of the sequential variable reduction resulted in the
retention of 5 terms; depth, TPI, slope, O2, northness. The deviance explained by the model (D2) was 0.523.

The model complexity was assessed against simpler models with less terms during the sequential variable
reduction step and the most complex model (containing these terms) was found to be the most appropriate
(Table 3).

Table 3. Summary of GAM model predicting presence or absence ofScleractinianReefs.

Term edf F p-value
depth 1.845 2.625 0.3208
TPI 2.020 3.864 0.267
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Term edf F p-value
slope 2.915 7.453 0.0609
O2 2.313 1.783 0.5163
northness 1.000 0.792 0.3734
residual 65.906
GCV -0.421
Deviance explained (%) 52.300

4.4.6 Model response curves are generated (where appropriate) and compared to expectations

Model response curves are shown in Figure 29. Probability of presence of ScleractinianReefs was flat through
most of the depth range. The probability of presence was highest at moderate oxygen concentrations and
on lower and north facing slopes. The probabiltiy of presence was also highest when TPI values were < 0
(indicating “valleys” or low points in the topography. None of the results were abnormal or unexpected.

4.4.6.1 Modelling method-specific term estimates or coefficients are reported (where relevant)
The model specific term estimates are provided in Table 4.

Table 4. Model coefficients, significance and standard error estimates for GAM predicting ScleractinianReefs
probability of presence.

x
(Intercept) -5.998
s(depth).1 1.452
s(depth).2 -4.982
s(depth).3 2.313
s(TPI).1 -4.387
s(TPI).2 15.374
s(TPI).3 2.704
s(slope).1 -14.520
s(slope).2 30.294
s(slope).3 -20.494
s(O2).1 -3.245
s(O2).2 12.469
s(O2).3 -2.124
s(northness).1 0.000
s(northness).2 0.000
s(northness).3 0.642

4.4.6.2 Independent variable importance is reported The relative importance of variables in the
model was measured by sequentially removing the individual variables, fitting a new model and calculating
the deviance explained. The deviance explained was then scaled to the full model to determine the relative
drop in model goodness-of-fit with removal of each variable. The results showed that depth was the least
important variable determining the probability of ScleractinianReefs presence, and Oxygen and TPI were the
most important (Figure 30).

4.5 Model uncertainty
4.5.1 Model specific goodness of fit statistics have been checked and reported

The ScleractinianReefs model AUC was 0.953, an excellent model according to the standards of Hosmer et
al., (2013).
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Using a threshold of 0.21 resulted in prediction of 6 of the 7 observed presences correctly, while predicting
about 96% of the absences correctly (sensitivity = 0.857 and specificity = 0.957).

Table 5. Confusion matrix of predicted and observed presence and absence of ScleractinianReefs using a
probability threshold 0.21.

Observed
Predicted Presence Absence
Presence 6 3
Absence 1 67

4.5.1.1 Multiple measures of goodness of fit have been examined Commonly used goodness-of-fit
measures for binomial models are provided in Table 5 for the GLM predicting ScleractinianReefs probability
of presence. These include the True Skill Statistic (Allouche et al., 2006), the root-mean-squared-error and
the Spearman’s rank correlation. Other threshold dependent metrics can be calculated from the confusion
matrix (Table 4).

Model diagnostics indicated no issues with the prediction of presence or absence (Figure 31).

4.5.2 Spatial autocorrelation in the residuals has been assessed and reported

There was not significant spatial autocorrelation in the model residuals measured by Moran’s I (I = 0.826).
This was not unexpected given the random-stratified sample design of observations in the study area.

4.5.3 Residuals have been tested against assumed distribution (where appropriate)

Not applicable for the binomial distribution. Figure 28 shows model residuals (on the logit scale are shown
for each data point used to model ScleractinianReefs and diagnostics.

4.5.3.1 Spatial patterns in residuals Model residuals are shown in Figure 32. This confirms the results
of the Moran’s I, with little evidence of spatial patterns in the residuals.

4.6 Model validation
4.6.1 Training and testing data splitting method

Both internal model validation method and independent data was used as a validation data set. K-fold
cross-validation was used here. Five (k) folds were chosen at random.

4.6.1.1 Potential spatial biases were accounted for in splitting the data The spatial blocking
method (Valvani et al., 2019) was not used to split the data for the internal cross-validation.

4.6.1.2 A standard method used for cross-validation k-fold cross-validation is a standard method.
The data was divided into 5 equal portions and a model then fit to 80% of the data and tested against
the remaining 20% of the data. This was repeated for each subdivision of the data. The same maps and
diagnostics were produced for each model fit on the k-folds.

The data folds appeared to show the same patterns as the full model.

The model performance was similar for all the training data sets (the full model and the individual folds).
However the performance of the model on the testing folds was less impressive. For example, the True Skill
Statistic and AUC for model folds 1 and 3-5 was very poor, indicating some potential issues with model
performance. In particular, the low number of presences may have resulted in poor fits when the data was
divided into folds.
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4.6.2 Truly independent data used for model validation

The presence and absence observations from 58 transects completed in 2024 was also used to test the models
developed on the 2022 survey data.

The ScleractinianReefs model AUC was 0.509, a poor performing model according to the standards of Hosmer
et al., (2013).

Using a threshold of 0.21, 0.21 resulted in prediction of 1 of the 4 observed presences correctly, while predicting
about 81% of the absences correctly (sensitivity = 0.25 and specificity = 0.815)

Table 6. Confusion matrix of predicted and observed presence and absence of ScleractinianReefs using a
probability threshold 0.21, 0.21 for the independently collected data set in 2024.

Observed
Predicted Presence Absence
Presence 1 10
Absence 3 44

Table 6. Model goodness of fit measures for the full model and the individual model validation folds

Fold AIC threshold AUC_training AUC_testing TSS_training TSS_testing
Full model 44.579 0.210 0.953 NA 0.814 NA
Fold_1 16.472 0.490 1.000 0.500 1.000 0.000
Fold_2 39.834 0.350 0.936 0.800 0.815 0.000
Fold_3 43.432 0.105 0.827 0.643 0.565 -0.357
Fold_4 21.746 0.495 1.000 0.518 1.000 -0.357
Fold_5 42.078 0.210 0.951 NaN 0.784 NaN

Fold Cor_training Cor_testing RMSE_training RMSE_testing
Full model 0.451 NA 0.207 NA
Fold_1 0.665 NA 0.007 0.447
Fold_2 0.450 0.252 0.209 0.251
Fold_3 0.335 -0.124 0.274 0.278
Fold_4 0.664 -0.024 0.002 0.661
Fold_5 0.494 NA 0.223 0.260

4.7 Model outputs
4.7.1 Maps of model predictions, model residuals and prediction error

Maps of model predictions are provided in Figure 34. Maps of residuals in Figure 32. Maps of prediction
error in Figure 35. The model predicted that the highest probability of presence for ScleractinianReefs was
at deep depths and in some areas near the summit depths of seamounts. It is likely that the model misfit the
deeper portions of the data, as there were only two instances where ScleractinianReefs were observed below
~400 m. So this may be an artifact of the low number of presence observations.

4.7.2 Areas of model extrapolation are clearly defined

The model was not extrapolated outside the five seamounts, although within this region, there were some
areas with little or no sampling. The model was extrapolated at depths from 850 - 1250 m where no sampling
occurred.
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4.7.3 The prediction unit is clearly defined (and explained if necessary)

The prediction unit is the probability of presence or absence of ScleractinianReefs.

4.7.4 Thresholding methods (for dichotomising probability into presence or absence) are
clearly described and appropriate

No thresholding was done (beyond the thresholding for calculating goodness-of-fit measures). Probability of
presence is presented as the result.

4.7.4.1 The sensitivity of model outcomes to threshold value chosen has been explored
Sensitivity to threshold values was not explored, but in a formal analysis of the model could be completed
using the provided model outputs.

4.8 Conclusions
The ScleractinianReefs model fit the observations from 2022 well. The internal model validation showed less
robust and even poor results. The independently collected data were not predicted with good accuracy. This
is likely due to the small number of observed presences in the dataset.
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Figure 27: Correlation among independent variables used in modeling.
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Figure 28: Diagnostic plots for GAM model assumptions.
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Figure 29: Response curves for independent variables used best-fitting GAM for presence or absence.

58



PRELIM
IN

ARY

Figure 30: Relative importance of variables included in the ScleractinianReef presence or absence GAM
measured by their contribution to deviance explained when sequentially removed from the model.
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Figure 31: Model diagnostic plots for ScleractinianReef presence or absence GAM.
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5 Vulnerable Marine Indicator Taxa Group: Hexactinellids
5.1 Study resolution
5.1.1 Location of the study area (or management region)

This modelling was carried out for five seamounts in the Northeastern Pacific Ocean where fisheries are
managed by the North Pacific Fisheries Commission. The five seamounts are shown in Figure 1 and are part
of the Cobb-Eickelberg seamount chain.

5.1.1.1 Spatial extent of the modelled area The specific seamounts modeled were five North Pacific
Seamounts (Cobb, Brown Bear, Eickelberg, Warwick and Corn). Modeling was conducted from depths of 0 -
1250 m. Data was collected from 0 to ~850 m.

5.1.1.2 Spatial resolution of the model and independent variables The spatial resolution of the
modeling was 100 m by 100 m grid cells. The all data was projected into an Albers equal area projection (proj4
description = “+proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs”).

5.1.1.3 Spatial precision (of observations and independent variables) The spatial precision of
the observations was taken from the gps mounted on the research vessel. Based on tracking information, the
camera system was towed slightly behind the vessel (~200 m typically), but along the same path as the vessel.
The anticipated precision of the varation of the camera path was expected to be less than 20 m across the
trackline.

5.1.1.4 Depth resolution/range/extent (of the observations and independent variables) The
depth range of the observations of Hexactinellids (from the depth sensor mounted on the camera) was from
61 to 808 m (mean = 442 m, SE = 206.28). The depth range of the modeled area was from 34 (the summit
depth of Cobb Seamount) to 1250 m.

5.1.2 Temporal extent of the data

5.1.2.1 Dates of data extent The dates observations used in model development were collected were
September 6, 2022 to September 20, 2022. The dates for observations used for model testing were from
September 3, 2024 to September 11, 2024.

5.1.2.2 Precision of date/time The precision of the date and the time of the data was assumed to be
the closest second.

5.1.2.3 Data/time resolution The resolution of the date and time was fraction of a second.

5.1.2.4 Impacts over time to consider in the data set (e.g. historical fishing effort) Fishing
occurred over the entire time frame from which these data points were collected. Fishing also has occured
historically since the 1970’s. We did not attempt to account for historical fishing effort over this time. There
may have been climate impacts occurring over the time frame of the data observations as well, however, these
were not accounted for in the analyses.

5.2 Dependent data
The dependent data are shown in Figure 36.

Table 1. Number of records for each taxonomic grouping in the order Hexactinellids from the survey database.
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Species or Taxa group Count
2 Hexactinellida 617
1 Farrea 25

5.2.1 Data type (presence, absence, abundance)

The data used for modeling Hexactinellids distribution were observed presences (n = 40) and absences (n =
37) that occurred at the five seamounts.

5.2.2 Data source (e.g. type of survey(s) combined)

The data were entirely from random stratified surveys of the Cobb-Eickelberg seamount chain conducted in
2022.

5.2.3 Measure of sampling effort

Sampling effort was estimated by the distance the camera traveled along each transect multiplied by the field
of view observed along the transect (Rooper et al. 2016). This provided an area observed for each transect
which was used as the effort measure. Area observed ranged from 254 to 2469 mˆ2 with a median area
observed of 1197 mˆ2.

5.2.4 Detectability

Detectability of the width of the viewing area of the camera along the transect (area observed) was assumed
to be 100% for VME indicator taxa. However, there were likely some individuals that were too small to be
detected.

5.2.5 Taxonomic level

The taxonomic level modeled here was the taxonomic group Hexactinellids (see Table 1 for individual families
included in this grouping and refer to CMM for NPFC definitions).

5.2.6 Functional attributes (its ecology)

Hexactinellids are a diverse, long-lived and fragile species. They occur in deep-water and are habitat forming
structures important to many fishes, invertebrates other taxonomic groups.

5.2.7 Taxonomic confidence of species/assemblages

The taxonomic confidence of the assemblage was assumed to be good. Experts experienced in identification
of corals and sponges from visual imagery in the North Pacific Ocean did all the identification and image
analyses.

5.2.8 Rationale for taxonomic/assemblage level modeled

Hexactinellids as defined here are a group that shares common habitat requirements and depth distribution.
They are closely related and the order is globally distributed at deep depths. This Order has been previously
modelled using Maximum entropy methods on a global extent and regional extent (Yesson et al., 2017, Chu
et al. 2018, Doherty et al. 2019).

5.2.9 Source of absence data

Absences were observations of no individuals at transects. In total there were 37 absences in the dataset.
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5.2.10 Other potential errors or biases in the data

There are some potential sources of error in the data, including errors in positioning of the records, errors in
species identification (including both false positives and false negatives).

5.2.11 Data filtering steps

No data filtering was conducted.

5.2.12 Taxonomic aggregation steps

The records for the Order Hexactinellids were aggregated by transect into presence or absence observations.

5.2.13 Method for combining dependent data sources (if done outside the modelling)

No other dependent data sources were used in this modelling.

5.3 Independent data
5.3.1 Independent data (environmental variables used)

Five independent variables were used in building a model of Hexactinellids distribution; bathymetry, topo-
graphic position index, seafloor slope, Oxygen concentration and northness (Figure 37).

5.3.2 Independent data source (source of raw or derived data)

The bathymetry used here was downloaded from the NOAA website (https://www.ncei.noaa.gov/maps/
bathymetry/). It consists of gridded bathymetry from a multibeam sources on a 3 arc-second grid for the
region of interest. The details of the data sources can be found on the NOAA website. There were some gaps in
the NOAA bathymetry layers. These were filled using single beam echosounder data collected during the 2022
and 2024 cruises and GEBCO bathymetry (www.gebco.net/data_and_products/gridded_bathymetry_data).
The single beam echosounder data and GEBCO bathymetry was sampled into the missing grids in the NOAA
bathymetry, with preference to the single beam echosounder data.

From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). Slope was calculated from the nearest 8 neighbors and TPI was calculated
with a focal distance of ~300 m.

Northness was calculated as the cosine of the aspect (direction relative to 0 degrees that the slope was facing)
for each grid cell based on bathymetry.

Oxygen data were based on the World Ocean Atlas data (2018 update). These data were clipped to the
area of interest and resampled into the bathymetry grid using bilinear interpolation. The five explanatory
variables are shown in Figure 37.

5.3.3 Native spatial and temporal resolution of the independent data

The native spatial resolution of the NOAA bathymetry was 3 arc-second grid. The native spa-
tial resolution for the Oxygen data was 0.5 degrees longitude and latitude. It should be noted
that the Oxygen data sources are conglomerations of data collected over varying spatial and tem-
poral scales (e.g. the temporal scale is since ~1900’s in the case of some measurements). For
complete documentation of the spatial and temporal scale of the raw data the NODC respective
website should be consulted (www.gebco.net/data_and_products/gridded_bathymetry_data and
https://www.nodc.noaa.gov/OC5/woa18/).

All independent data layers were trimmed to include only observations and explanatory variables from this
region and to depths of 1250 m.
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5.3.4 Data processing and scaling (method for downscaling or aggregation)

Both the bathymetry (for gap filling) and oxygen layers were downscaled to a 100 m by 100 m grid in order
to match the scale of the bathymetry. This downscaling was completed using bilinear interpolation.

5.3.4.1 Goodness of fit for downscaled aggregated data The downscaled data at the dependent
data sites for both Oxygen and bathymetry represented the lower resolution very well (r > 0.9).

5.3.4.2 Measurement errors and bias Measurement errors in the data or bias in the data were not
accounted for beyond the processing conducted on the raw measurements by GEBCO or NODC.

5.3.5 Derivation methods and calculations for derived variables

From the bathymetry three derived variables (aspect, slope and topographic position index) were calculated
using the raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see
below) to a 100 m by 100 m grid. The aspect variable was then converted to northness using a cosine function.

5.3.6 Rationale for inclusion of independent variables clearly stated and ecologically relevant

These five variables (depth, slope, topographic position index, northness and oxygen) have been found in
previous studies to influence the distribution of Hexactinellids (Huff et al., 2013, Yesson et al., 2017, Etnoyer
et al., 2018).

5.4 Modelling approach
In this study generalized additive models (GAM) were developed to predict species distribution (Wood 2006).

5.4.1 Model steps

5.4.1.1 Code for model provided The code and data used for this model are not currently publicly
available, but can be availabe on request from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

5.4.1.2 Packages used are referenced The packages used to develop this model are referenced in the
above .Rmd file. The key packages used were “sf”, “rnaturalearth”,“ggplot2”,“rgdal”,“rgeos”,“gstat”,“raster”,“mgcv”
and are all available for download from CRAN. The R version used here was R version 3.6.0 (2019-04-26) –
“Planting of a Tree” (R Core Development Team 2019).

5.4.1.3 Data is made available as supplementary material The independent variables are available
from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

5.4.2 Biases (spatial, temporal and other) acknowledged and described

There were no inherent biases in the modeling method (although there may be biases in the dependent and
independent data described above).

5.4.3 Methods and approaches to collinearity in independent variables

5.4.3.1 Collinearity in independent variables The five explanatory variables were examined for
collinearity using a pearson correlations (Figure 38). Variance inflation inflation factors (Zuur et al. 2002)
were also examined. In both cases the values were low, suggesting that the variables were fairly independent
of each other.

Table 2. Variance inflation factors for independent variables using in modeling.
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Variable VIF
Depth 3.592
Slope 1.231
TPI 1.091
Oxygen 3.372
Northness 1.065

5.4.3.2 Criteria for variable/dimension reduction provided None of the variance inflation factors
exceeded 5, indicating that dimension reduction was not warranted.

5.4.4 Choice of modelling method is explained and justified

The modelling method chosen was a generalized additive model (GAM). This model was primarily chosen for
its simplicity of assumptions (stated below), its usefulness in fitting binomial (presence-absence) data, and
the many previous applications of this method to predicting species distributions.

5.4.4.1 Modelling assumptions are clearly stated The basic GAM assumptions are; 1) Independence
among data points, 2) The distribution of the residuals is binomially distributed, 3) homogenous variance
across the fitted values, and 4) a non-linear relationship between response and predictor.

5.4.4.2 Potential violations of model assumptions are explored Diagnostic plots of Pearson
residuals are shown in Figure 39. The residuals did not indicate any serious violations of GAM assumptions.

5.4.5 Model application

To build the model of Hexactinellids a generalized additive model was constructed that contained five
explanatory variables (depth, slope, topographic position index, northness and oxygen). The dependent data
was presence or absence of Hexactinellids. The full model was

y = α + s(depth) + s(slope) + s(TPI) + s(northness) + s(O2) + σ

A binomial error distribution (σ) was used for the model fitting. A full model was fit initially containing all
the variables with a basis degrees of freedom of 4 for each smooth. This model was reduced sequentially by
removing the least significant term and comparing the AIC for the resulting reduced model following the
methods of Rooper et al. (2016). This was repeated until there was a decline in model skill when removing a
variable.

5.4.5.1 Model settings The default GAM settings in R were used (see CobbSDM_Hexactinellid.Rmd).
The only setting that was modified was the specification of the binomial error distribution and the specified
number of knots for the smooth of k = 4.

5.4.5.2 Model complexity is assessed The results of the sequential variable reduction resulted in the
retention of 3 terms; depth, TPI, slope. The deviance explained by the model (D2) was 0.691.

The model complexity was assessed against simpler models with less terms during the sequential variable
reduction step and the most complex model (containing these terms) was found to be the most appropriate
(Table 3).

Table 3. Summary of GAM model predicting presence or absence ofHexactinellids.

Term edf F p-value
depth 1.000 13.486 0.0002
TPI 2.854 9.034 0.0267
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Term edf F p-value
slope 2.708 2.276 0.4972
residual 69.438
GCV -0.376
Deviance explained (%) 69.100

5.4.6 Model response curves are generated (where appropriate) and compared to expectations

Model response curves are shown in Figure 40. Probability of presence of Hexactinellids was highest above
500 m depth was higher when TPI values were < 0 (indicating “valleys” or low points in the topography.
Hexactinellid probability of presence was also higher at steeper slopes. None of the results were abnormal or
unexpected.

5.4.6.1 Modelling method-specific term estimates or coefficients are reported (where relevant)
The model specific term estimates are provided in Table 4.

Table 4. Model coefficients, significance and standard error estimates for GAM predicting Hexactinellids
probability of presence.

x
(Intercept) 0.429
s(depth).1 0.000
s(depth).2 0.000
s(depth).3 4.230
s(TPI).1 14.809
s(TPI).2 39.478
s(TPI).3 -17.633
s(slope).1 7.659
s(slope).2 -49.073
s(slope).3 19.652

5.4.6.2 Independent variable importance is reported The relative importance of variables in the
model was measured by sequentially removing the individual variables, fitting a new model and calculating
the deviance explained. The deviance explained was then scaled to the full model to determine the relative
drop in model goodness-of-fit with removal of each variable. The results showed that slope was the least
important variable determining the probability of Hexactinellids presence, and TPI and depth were the most
important (Figure 41).

5.5 Model uncertainty
5.5.1 Model specific goodness of fit statistics have been checked and reported

The Hexactinellids model AUC was 0.968, an excellent model according to the standards of Hosmer et al.,
(2013).

Using a threshold of 0.665 resulted in prediction of 34 of the 40 observed presences correctly, while predicting
about 97% of the absences correctly (sensitivity = 0.85 and specificity = 0.973).

Table 5. Confusion matrix of predicted and observed presence and absence of Hexactinellids using a probability
threshold 0.665.
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Observed
Predicted Presence Absence
Presence 34 1
Absence 6 36

5.5.1.1 Multiple measures of goodness of fit have been examined Commonly used goodness-of-fit
measures for binomial models are provided in Table 5 for the GAM predicting Hexactinellids probability of
presence. These include the True Skill Statistic (Allouche et al., 2006), the root-mean-squared-error and the
Spearman’s rank correlation. Other threshold dependent metrics can be calculated from the confusion matrix
(Table 4).

Model diagnostics indicated no issues with the prediction of presence or absence (Figure 42).The predicted
occurrence always included the 1:1 line.

5.5.2 Spatial autocorrelation in the residuals has been assessed and reported

There was not significant spatial autocorrelation in the model residuals measured by Moran’s I (I = 0.052),
although the value was almost significant. This was not unexpected given the random-stratified sample design
of observations in the study area.

5.5.3 Residuals have been tested against assumed distribution (where appropriate)

Not applicable for the binomial distribution. Figure 39 shows model residuals (on the logit scale are shown
for each data point used to model Hexactinellids and diagnostics.

5.5.3.1 Spatial patterns in residuals Model residuals are shown in Figure 43. This confirms the results
of the Moran’s I, with little evidence of spatial patterns in the residuals.

5.6 Model validation
5.6.1 Training and testing data splitting method

Both internal model validation method and independent data was used as a validation data set. K-fold
cross-validation was used here. Five (k) folds were chosen at random.

5.6.1.1 Potential spatial biases were accounted for in splitting the data The spatial blocking
method (Valvani et al., 2019) was not used to split the data for the internal cross-validation.

5.6.1.2 A standard method used for cross-validation k-fold cross-validation is a standard method.
The data was divided into 5 equal portions and a model then fit to 80% of the data and tested against
the remaining 20% of the data. This was repeated for each subdivision of the data. The same maps and
diagnostics were produced for each model fit on the k-folds.

The data folds appeared to show the same patterns as the full model.

The model performance was similar for all the training and testing data sets (the full model and the individual
folds).

5.6.2 Truly independent data used for model validation

The presence and absence observations from 58 transects completed in 2024 was also used to test the models
developed on the 2022 survey data.

The Hexactinellids model AUC was 0.754, a good performing model according to the standards of Hosmer et
al., (2013).
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Using a threshold of 0.665, 0.665 resulted in prediction of 12 of the 22 observed presences correctly, while
predicting about 78% of the absences correctly (sensitivity = 0.545 and specificity = 0.778).

Table 6. Confusion matrix of predicted and observed presence and absence of Hexactinellids using a probability
threshold 0.665, 0.665 for the independently collected data set in 2024.

Observed
Predicted Presence Absence
Presence 12 8
Absence 10 28

Table 6. Model goodness of fit measures for the full model and the individual model validation folds

Fold AIC threshold AUC_training AUC_testing TSS_training TSS_testing
Full model 48.086 0.665 0.968 NA 0.823 NA
Fold_1 37.432 0.545 0.977 0.852 0.839 0.611
Fold_2 37.228 0.670 0.973 0.953 0.809 0.875
Fold_3 45.402 0.435 0.957 1.000 0.797 0.875
Fold_4 41.625 0.355 0.963 0.968 0.857 0.857
Fold_5 37.296 0.547 0.971 0.833 0.839 0.222

Fold Cor_training Cor_testing RMSE_training RMSE_testing
Full model 0.810 NA 0.256 NA
Fold_1 0.826 0.598 0.237 0.421
Fold_2 0.819 0.786 0.247 0.275
Fold_3 0.790 0.866 0.274 0.160
Fold_4 0.800 0.806 0.265 0.282
Fold_5 0.816 0.567 0.246 0.417

5.7 Model outputs
5.7.1 Maps of model predictions, model residuals and prediction error

Maps of model predictions are provided in Figure 45. Maps of residuals in Figure 43. Maps of prediction
error in Figure 46. The model predicted that the highest probability of presence for Hexactinellids was in a
band from 500 m and deeper.

5.7.2 Areas of model extrapolation are clearly defined

The model was not extrapolated outside the five seamounts, although within this region, there were some
areas with little or no sampling. The model was extrapolated at depths from 850 - 1250 m where no sampling
occurred.

5.7.3 The prediction unit is clearly defined (and explained if necessary)

The prediction unit is the probability of presence or absence of Hexactinellids.

5.7.4 Thresholding methods (for dichotomising probability into presence or absence) are
clearly described and appropriate

No thresholding was done (beyond the thresholding for calculating goodness-of-fit measures). Probability of
presence is presented as the result.
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5.7.4.1 The sensitivity of model outcomes to threshold value chosen has been explored
Sensitivity to threshold values was not explored, but in a formal analysis of the model could be completed
using the provided model outputs.

5.8 Conclusions
The Hexactinellids model fit the observations from 2022 well. The internal model validation showed robust
results. The independently collected data were predicted with good accuracy.

Model response curves showed the importance of depth. At depths below 500 m, there was a high probability
of Hexactinellids presence at all seamounts on a randomly chosen transect.
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Figure 38: Correlation among independent variables used in modeling.
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Figure 39: Diagnostic plots for GAM model assumptions.
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Figure 40: Response curves for independent variables used best-fitting GAM for presence or absence.
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Figure 41: Relative importance of variables included in the Hexactinellid presence or absence GAM measured
by their contribution to deviance explained when sequentially removed from the model.
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Figure 42: Model diagnostic plots for Hexactinellid presence or absence GAM.
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6 Vulnerable Marine Indicator Taxa Group: Demosponges
6.1 Study resolution
6.1.1 Location of the study area (or management region)

This modelling was carried out for five seamounts in the Northeastern Pacific Ocean where fisheries are
managed by the North Pacific Fisheries Commission. The five seamounts are shown in Figure 1 and are part
of the Cobb-Eickelberg seamount chain.

6.1.1.1 Spatial extent of the modelled area The specific seamounts modeled were five North Pacific
Seamounts (Cobb, Brown Bear, Eickelberg, Warwick and Corn). Modeling was conducted from depths of 0 -
1250 m. Data was collected from 0 to ~850 m.

6.1.1.2 Spatial resolution of the model and independent variables The spatial resolution of the
modeling was 100 m by 100 m grid cells. The all data was projected into an Albers equal area projection (proj4
description = “+proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs”).

6.1.1.3 Spatial precision (of observations and independent variables) The spatial precision of
the observations was taken from the gps mounted on the research vessel. Based on tracking information, the
camera system was towed slightly behind the vessel (~200 m typically), but along the same path as the vessel.
The anticipated precision of the varation of the camera path was expected to be less than 20 m across the
trackline.

6.1.1.4 Depth resolution/range/extent (of the observations and independent variables) The
depth range of the observations of Demosponges (from the depth sensor mounted on the camera) was from 61
to 808 m (mean = 442 m, SE = 206.28). The depth range of the modeled area was from 34 (the summit
depth of Cobb Seamount) to 1250 m.

6.1.2 Temporal extent of the data

6.1.2.1 Dates of data extent The dates observations used in model development were collected were
September 6, 2022 to September 20, 2022. The dates for observations used for model testing were from
September 3, 2024 to September 11, 2024.

6.1.2.2 Precision of date/time The precision of the date and the time of the data was assumed to be
the closest second.

6.1.2.3 Data/time resolution The resolution of the date and time was fraction of a second.

6.1.2.4 Impacts over time to consider in the data set (e.g. historical fishing effort) Fishing
occurred over the entire time frame from which these data points were collected. Fishing also has occured
historically since the 1970’s. We did not attempt to account for historical fishing effort over this time. There
may have been climate impacts occurring over the time frame of the data observations as well, however, these
were not accounted for in the analyses.

6.2 Dependent data
The dependent data are shown in Figure 47.

Table 1. Number of records for each taxonomic grouping in the order Demosponges from the survey database.
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Species or Taxa group Count
Demospongiae 61

6.2.1 Data type (presence, absence, abundance)

The data used for modeling Demosponges distribution were observed presences (n = 12) and absences (n =
65) that occurred at the five seamounts.

6.2.2 Data source (e.g. type of survey(s) combined)

The data were entirely from random stratified surveys of the Cobb-Eickelberg seamount chain conducted in
2022.

6.2.3 Measure of sampling effort

Sampling effort was estimated by the distance the camera traveled along each transect multiplied by the field
of view observed along the transect (Rooper et al. 2016). This provided an area observed for each transect
which was used as the effort measure. Area observed ranged from 254 mˆ2 to 2469 with a median area
observed of 1197 mˆ2.

6.2.4 Detectability

Detectability of the width of the viewing area of the camera along the transect (area observed) was assumed
to be 100% for VME indicator taxa. However, there were likely some individuals that were too small to be
detected.

6.2.5 Taxonomic level

The taxonomic level modeled here was the taxonomic group Demosponges (see Table 1 for individual families
included in this grouping and refer to CMM for NPFC definitions).

6.2.6 Functional attributes (its ecology)

Demosponges are a diverse, long-lived and fragile species. They occur in deep-water and are habitat forming
structures important to many fishes, invertebrates other taxonomic groups.

6.2.7 Taxonomic confidence of species/assemblages

The taxonomic confidence of the assemblage was assumed to be good. Experts experienced in identification
of corals and sponges from visual imagery in the North Pacific Ocean did all the identification and image
analyses.

6.2.8 Rationale for taxonomic/assemblage level modeled

Demosponges as defined here are a group that shares common habitat requirements and depth distribution.
They are closely related and the order is globally distributed at deep depths. This Order has been previously
modelled using Maximum entropy methods on a global extent and regional extent (Yesson et al., 2017, Chu
et al. 2018, Doherty et al. 2019).

6.2.9 Source of absence data

Absences were observations of no individuals at transects. In total there were 65 absences in the dataset.
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6.2.10 Other potential errors or biases in the data

There are some potential sources of error in the data, including errors in positioning of the records, errors in
species identification (including both false positives and false negatives).

6.2.11 Data filtering steps

No data filtering was conducted.

6.2.12 Taxonomic aggregation steps

The records for the Order Demosponges were aggregated by transect into presence or absence observations.

6.2.13 Method for combining dependent data sources (if done outside the modelling)

No other dependent data sources were used in this modelling.

6.3 Independent data
6.3.1 Independent data (environmental variables used)

Five independent variables were used in building a model of Demosponges distribution; bathymetry, topo-
graphic position index, seafloor slope, Oxygen concentration and northness (Figure 48).

6.3.2 Independent data source (source of raw or derived data)

The bathymetry used here was downloaded from the NOAA website (https://www.ncei.noaa.gov/maps/
bathymetry/). It consists of gridded bathymetry from a multibeam sources on a 3 arc-second grid for the
region of interest. The details of the data sources can be found on the NOAA website. There were some gaps in
the NOAA bathymetry layers. These were filled using single beam echosounder data collected during the 2022
and 2024 cruises and GEBCO bathymetry (www.gebco.net/data_and_products/gridded_bathymetry_data).
The single beam echosounder data and GEBCO bathymetry was sampled into the missing grids in the NOAA
bathymetry, with preference to the single beam echosounder data.

From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). Slope was calculated from the nearest 8 neighbors and TPI was calculated
with a focal distance of ~300 m.

Northness was calculated as the cosine of the aspect (direction relative to 0 degrees that the slope was facing)
for each grid cell based on bathymetry.

Oxygen data were based on the World Ocean Atlas data (2018 update). These data were clipped to the
area of interest and resampled into the bathymetry grid using bilinear interpolation. The five explanatory
variables are shown in Figure 48.

6.3.3 Native spatial and temporal resolution of the independent data

The native spatial resolution of the NOAA bathymetry was 3 arc-second grid. The native spa-
tial resolution for the Oxygen data was 0.5 degrees longitude and latitude. It should be noted
that the Oxygen data sources are conglomerations of data collected over varying spatial and tem-
poral scales (e.g. the temporal scale is since ~1900’s in the case of some measurements). For
complete documentation of the spatial and temporal scale of the raw data the NODC respective
website should be consulted (www.gebco.net/data_and_products/gridded_bathymetry_data and
https://www.nodc.noaa.gov/OC5/woa18/).

All independent data layers were trimmed to include only observations and explanatory variables from this
region and to depths of 1250 m.
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6.3.4 Data processing and scaling (method for downscaling or aggregation)

Both the bathymetry (for gap filling) and oxygen layers were downscaled to a 100 m by 100 m grid in order
to match the scale of the bathymetry. This downscaling was completed using bilinear interpolation.

6.3.4.1 Goodness of fit for downscaled aggregated data The downscaled data at the dependent
data sites for both Oxygen and bathymetry represented the lower resolution very well (r > 0.9).

6.3.4.2 Measurement errors and bias Measurement errors in the data or bias in the data were not
accounted for beyond the processing conducted on the raw measurements by GEBCO or NODC.

6.3.5 Derivation methods and calculations for derived variables

From the bathymetry three derived variables (aspect, slope and topographic position index) were calculated
using the raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see
below) to a 100 m by 100 m grid. The aspect variable was then converted to northness using a cosine function.

6.3.6 Rationale for inclusion of independent variables clearly stated and ecologically relevant

These five variables (depth, slope, topographic position index, northness and oxygen) have been found in
previous studies to influence the distribution of Demosponges (Huff et al., 2013, Yesson et al., 2017, Etnoyer
et al., 2018).

6.4 Modelling approach
In this study generalized additive models (GAM) were developed to predict species distribution (Wood 2006).

6.4.1 Model steps

6.4.1.1 Code for model provided The code and data used for this model are not currently publicly
available, but can be availabe on request from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

6.4.1.2 Packages used are referenced The packages used to develop this model are referenced in the
above .Rmd file. The key packages used were “sf”, “rnaturalearth”,“ggplot2”,“rgdal”,“rgeos”,“gstat”,“raster”,“mgcv”
and are all available for download from CRAN. The R version used here was R version 3.6.0 (2019-04-26) –
“Planting of a Tree” (R Core Development Team 2019).

6.4.1.3 Data is made available as supplementary material The independent variables are available
from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

6.4.2 Biases (spatial, temporal and other) acknowledged and described

There were no inherent biases in the modeling method (although there may be biases in the dependent and
independent data described above).

6.4.3 Methods and approaches to collinearity in independent variables

6.4.3.1 Collinearity in independent variables The five explanatory variables were examined for
collinearity using a pearson correlations (Figure 49). Variance inflation inflation factors (Zuur et al. 2002)
were also examined. In both cases the values were low, suggesting that the variables were fairly independent
of each other.

Table 2. Variance inflation factors for independent variables using in modeling.
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Variable VIF
Depth 3.592
Slope 1.231
TPI 1.091
Oxygen 3.372
Northness 1.065

6.4.3.2 Criteria for variable/dimension reduction provided None of the variance inflation factors
exceeded 5, indicating that dimension reduction was not warranted.

6.4.4 Choice of modelling method is explained and justified

The modelling method chosen was a generalized additive model (GAM). This model was primarily chosen for
its simplicity of assumptions (stated below), its usefulness in fitting binomial (presence-absence) data, and
the many previous applications of this method to predicting species distributions.

6.4.4.1 Modelling assumptions are clearly stated The basic GAM assumptions are; 1) Independence
among data points, 2) The distribution of the residuals is binomially distributed, 3) homogenous variance
across the fitted values, and 4) a non-linear relationship between response and predictor.

6.4.4.2 Potential violations of model assumptions are explored Diagnostic plots of Pearson
residuals are shown in Figure 50. The residuals did not indicate any serious violations of GAM assumptions.

6.4.5 Model application

To build the model of Demosponges a generalized additive model was constructed that contained five
explanatory variables (depth, slope, topographic position index, northness and oxygen). The dependent data
was presence or absence of Demosponges. The full model was

y = α + s(depth) + s(slope) + s(TPI) + s(northness) + s(O2) + σ

A binomial error distribution (σ) was used for the model fitting. A full model was fit initially containing all
the variables with a basis degrees of freedom of 4 for each smooth. This model was reduced sequentially by
removing the least significant term and comparing the AIC for the resulting reduced model following the
methods of Rooper et al. (2016). This was repeated until there was a decline in model skill when removing a
variable.

6.4.5.1 Model settings The default GAM settings in R were used (see CobbSDM_Demosponge.Rmd).
The only setting that was modified was the specification of the binomial error distribution and the specified
number of knots for the smooth of k = 4.

6.4.5.2 Model complexity is assessed The results of the sequential variable reduction resulted in the
retention of 2 terms; depth, O2. The deviance explained by the model (D2) was 0.096.

The model complexity was assessed against simpler models with less terms during the sequential variable
reduction step and the most complex model (containing these terms) was found to be the most appropriate
(Table 3).

Table 3. Summary of GAM model predicting presence or absence of Demosponges.

Term edf F p-value
depth 1.00 2.496 0.1141
O2 1.00 3.701 0.0544
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Term edf F p-value
residual 74.00
GCV -0.14
Deviance explained (%) 9.60

6.4.6 Model response curves are generated (where appropriate) and compared to expectations

Model response curves are shown in Figure 51. Probability of presence of Demosponges was highest at depths
< 500 m in low oxygen areas. None of the results were abnormal or unexpected.

6.4.6.1 Modelling method-specific term estimates or coefficients are reported (where relevant)
The model specific term estimates are provided in Table 4.

Table 4. Model coefficients, significance and standard error estimates for GAM predicting Demosponges
probability of presence.

x
(Intercept) -2.105
s(depth).1 0.000
s(depth).2 0.000
s(depth).3 -1.262
s(O2).1 0.000
s(O2).2 0.000
s(O2).3 -2.084

6.4.6.2 Independent variable importance is reported The relative importance of variables in the
model was measured by sequentially removing the individual variables, fitting a new model and calculating
the deviance explained. The deviance explained was then scaled to the full model to determine the relative
drop in model goodness-of-fit with removal of each variable. The results showed that oxygen concentration
and depth were of relatively equal importance in determining the probability of Demosponges presence (Figure
52).

6.5 Model uncertainty
6.5.1 Model specific goodness of fit statistics have been checked and reported

The Demosponges model AUC was 0.713, a good model according to the standards of Hosmer et al., (2013).

Using a threshold of 0.14 resulted in prediction of 11 of the 12 observed presences correctly, while predicting
about 49% of the absences correctly (sensitivity = 0.917 and specificity = 0.492).

Table 5. Confusion matrix of predicted and observed presence and absence of Demosponges using a probability
threshold 0.14.

Observed
Predicted Presence Absence
Presence 11 33
Absence 1 32

6.5.1.1 Multiple measures of goodness of fit have been examined Commonly used goodness-of-fit
measures for binomial models are provided in Table 5 for the GLM predicting Demosponges probability of
presence. These include the True Skill Statistic (Allouche et al., 2006), the root-mean-squared-error and the
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Spearman’s rank correlation. Other threshold dependent metrics can be calculated from the confusion matrix
(Table 4).

Model diagnostics indicated some minor issues with the prediction of presence or absence (Figure 53). There
were often absences in the higher probability areas, which could indicate the model did not fit well.

6.5.2 Spatial autocorrelation in the residuals has been assessed and reported

There was not significant spatial autocorrelation in the model residuals measured by Moran’s I (I = 0.06).
However, this value was close to significant. This was not unexpected given the random-stratified sample
design of observations in the study area.

6.5.3 Residuals have been tested against assumed distribution (where appropriate)

Not applicable for the binomial distribution. Figure 50 shows model residuals (on the logit scale are shown
for each data point used to model Demosponges and diagnostics.

6.5.3.1 Spatial patterns in residuals Model residuals are shown in Figure 54. This confirms the results
of the Moran’s I, with little evidence of spatial patterns in the residuals.

6.6 Model validation
6.6.1 Training and testing data splitting method

Both internal model validation method and independent data was used as a validation data set. K-fold
cross-validation was used here. Five (k) folds were chosen at random.

6.6.1.1 Potential spatial biases were accounted for in splitting the data The spatial blocking
method (Valvani et al., 2019) was not used to split the data for the internal cross-validation.

6.6.1.2 A standard method used for cross-validation k-fold cross-validation is a standard method.
The data was divided into 5 equal portions and a model then fit to 80% of the data and tested against
the remaining 20% of the data. This was repeated for each subdivision of the data. The same maps and
diagnostics were produced for each model fit on the k-folds.

The data folds appeared to show the same patterns as the full model.

The model performance was similar for all the training data sets (the full model and the individual folds).
However the performance of the model on the testing folds was less impressive. For example, the True Skill
Statistic and AUC for model folds 2, 3 and 5 was very poor, indicating some potential issues with model
performance. There were relatively few presence observations in the data set, which may have resulted in
these random splits of the data with few presence observations to fit the model.

6.6.2 Truly independent data used for model validation

The presence and absence observations from 58 transects completed in 2024 was also used to test the models
developed on the 2022 survey data.

The Demosponges model AUC was 0.838, an excellent performing model according to the standards of Hosmer
et al., (2013).

Using a threshold of 0.14, 0.14 resulted in prediction of 10 of the 13 observed presences correctly, while
predicting about 76% of the absences correctly (sensitivity = 0.769 and specificity = 0.756)

Table 6. Confusion matrix of predicted and observed presence and absence of Demosponges using a probability
threshold 0.14, 0.14 for the independently collected data set in 2024.
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Observed
Predicted Presence Absence
Presence 10 11
Absence 3 34

Table 6. Model goodness of fit measures for the full model and the individual model validation folds

Fold AIC threshold AUC_training AUC_testing TSS_training TSS_testing
Full model 66.257 0.140 0.713 NA 0.409 NA
Fold_1 60.187 0.130 0.602 0.714 0.242 0.571
Fold_2 42.411 0.080 0.576 0.650 0.252 0.200
Fold_3 52.273 0.125 0.642 0.583 0.342 -0.083
Fold_4 55.308 0.125 0.691 0.867 0.400 -0.667
Fold_5 59.505 0.130 0.626 0.571 0.262 0.500

Fold Cor_training Cor_testing RMSE_training RMSE_testing
Full model 0.267 NA 0.352 NA
Fold_1 0.136 0.186 0.378 0.253
Fold_2 0.078 0.252 0.296 0.545
Fold_3 0.173 0.116 0.345 0.401
Fold_4 0.254 -0.308 0.368 0.316
Fold_5 0.166 0.062 0.376 0.264

6.7 Model outputs
6.7.1 Maps of model predictions, model residuals and prediction error

Maps of model predictions are provided in Figure 56. Maps of residuals in Figure 54. Maps of prediction
error in Figure 57. The model predicted that the highest probability of presence for Demosponges was near
the summits of each of the seamounts.

6.7.2 Areas of model extrapolation are clearly defined

The model was not extrapolated outside the five seamounts, although within this region, there were some
areas with little or no sampling. The model was extrapolated at depths from 850 - 1250 m where no sampling
occurred.

6.7.3 The prediction unit is clearly defined (and explained if necessary)

The prediction unit is the probability of presence or absence of Demosponges.

6.7.4 Thresholding methods (for dichotomising probability into presence or absence) are
clearly described and appropriate

No thresholding was done (beyond the thresholding for calculating goodness-of-fit measures). Probability of
presence is presented as the result.

6.7.4.1 The sensitivity of model outcomes to threshold value chosen has been explored
Sensitivity to threshold values was not explored, but in a formal analysis of the model could be completed
using the provided model outputs.
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6.8 Conclusions
The Demosponges model fit the observations from 2022 well. The internal model validation showed somewhat
robust results. The independently collected data were predicted with excellent accuracy.

Model response curves showed the importance of depth. At depths above 500 m, there was a high probability
of Demosponges presence on a randomly chosen transect.
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Figure 49: Correlation among independent variables used in modeling.
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Figure 50: Diagnostic plots for GAM model assumptions.
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Figure 51: Response curves for independent variables used best-fitting GAM for presence or absence.
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Figure 52: Relative importance of variables included in the Demosponge presence or absence GAM measured
by their contribution to deviance explained when sequentially removed from the model.
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Figure 53: Model diagnostic plots for Demosponge presence or absence GAM.
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7 Vulnerable Marine Indicator Taxa Group: Pennatulaceans
7.1 Study resolution
7.1.1 Location of the study area (or management region)

This modelling was carried out for five seamounts in the Northeastern Pacific Ocean where fisheries are
managed by the North Pacific Fisheries Commission. The five seamounts are shown in Figure 1 and are part
of the Cobb-Eickelberg seamount chain.

7.1.1.1 Spatial extent of the modelled area The specific seamounts modeled were five North Pacific
Seamounts (Cobb, Brown Bear, Eickelberg, Warwick and Corn). Modeling was conducted from depths of 0 -
1250 m. Data was collected from 0 to ~850 m.

7.1.1.2 Spatial resolution of the model and independent variables The spatial resolution of the
modeling was 100 m by 100 m grid cells. The all data was projected into an Albers equal area projection (proj4
description = “+proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs”).

7.1.1.3 Spatial precision (of observations and independent variables) The spatial precision of
the observations was taken from the gps mounted on the research vessel. Based on tracking information, the
camera system was towed slightly behind the vessel (~200 m typically), but along the same path as the vessel.
The anticipated precision of the varation of the camera path was expected to be less than 20 m across the
trackline.

7.1.1.4 Depth resolution/range/extent (of the observations and independent variables) The
depth range of the observations of Pennatulaceans (from the depth sensor mounted on the camera) was from
61 to 808 m (mean = 442 m, SE = 206.28). The depth range of the modeled area was from 34 (the summit
depth of Cobb Seamount) to 1250 m.

7.1.2 Temporal extent of the data

7.1.2.1 Dates of data extent The dates observations used in model development were collected were
September 6, 2022 to September 20, 2022. The dates for observations used for model testing were from
September 3, 2024 to September 11, 2024.

7.1.2.2 Precision of date/time The precision of the date and the time of the data was assumed to be
the closest second.

7.1.2.3 Data/time resolution The resolution of the date and time was fraction of a second.

7.1.2.4 Impacts over time to consider in the data set (e.g. historical fishing effort) Fishing
occurred over the entire time frame from which these data points were collected. Fishing also has occured
historically since the 1970’s. We did not attempt to account for historical fishing effort over this time. There
may have been climate impacts occurring over the time frame of the data observations as well, however, these
were not accounted for in the analyses.

7.2 Dependent data
The dependent data are shown in Figure 58.

Table 1. Number of records for each taxonomic grouping in the order Pennatulaceans from the survey
database.
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Species or Taxa group Count
2 Balticina 63
4 Pennatulacea 62
1 Anthoptilum sp 7
3 Lithoptilum lithophilum 4
5 Umbellula lindahli 1

7.2.1 Data type (presence, absence, abundance)

The data used for modeling Pennatulaceans distribution were observed presences (n = 41) and absences (n =
36) that occurred at the five seamounts.

7.2.2 Data source (e.g. type of survey(s) combined)

The data were entirely from random stratified surveys of the Cobb-Eickelberg seamount chain conducted in
2022.

7.2.3 Measure of sampling effort

Sampling effort was estimated by the distance the camera traveled along each transect multiplied by the field
of view observed along the transect (Rooper et al. 2016). This provided an area observed for each transect
which was used as the effort measure. Area observed ranged from 254 to 2469 mˆ2 with a median area
observed of 1197 mˆ2.

7.2.4 Detectability

Detectability of the width of the viewing area of the camera along the transect (area observed) was assumed
to be 100% for VME indicator taxa. However, there were likely some individuals that were too small to be
detected.

7.2.5 Taxonomic level

The taxonomic level modeled here was the taxonomic group Pennatulaceans (see Table 1 for individual
families included in this grouping and refer to CMM for NPFC definitions).

7.2.6 Functional attributes (its ecology)

Pennatulaceans are a diverse, long-lived and fragile species. They occur in deep-water and are habitat forming
structures important to many fishes, invertebrates other taxonomic groups.

7.2.7 Taxonomic confidence of species/assemblages

The taxonomic confidence of the assemblage was assumed to be good. Experts experienced in identification
of corals and sponges from visual imagery in the North Pacific Ocean did all the identification and image
analyses.

7.2.8 Rationale for taxonomic/assemblage level modeled

Pennatulaceans as defined here are a group that shares common habitat requirements and depth distribution.
They are closely related and the order is globally distributed at deep depths. This Order has been previously
modelled using Maximum entropy methods on a global extent and regional extent (Yesson et al., 2017, Chu
et al. 2018, Doherty et al. 2019).

7.2.9 Source of absence data

Absences were observations of no individuals at transects. In total there were 36 absences in the dataset.
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7.2.10 Other potential errors or biases in the data

There are some potential sources of error in the data, including errors in positioning of the records, errors in
species identification (including both false positives and false negatives).

7.2.11 Data filtering steps

No data filtering was conducted.

7.2.12 Taxonomic aggregation steps

The records for the Order Pennatulaceans were aggregated by transect into presence or absence observations.

7.2.13 Method for combining dependent data sources (if done outside the modelling)

No other dependent data sources were used in this modelling.

7.3 Independent data
7.3.1 Independent data (environmental variables used)

Five independent variables were used in building a model of Pennatulaceans distribution; bathymetry,
topographic position index, seafloor slope, Oxygen concentration and northness (Figure 59).

7.3.2 Independent data source (source of raw or derived data)

The bathymetry used here was downloaded from the NOAA website (https://www.ncei.noaa.gov/maps/
bathymetry/). It consists of gridded bathymetry from a multibeam sources on a 3 arc-second grid for the
region of interest. The details of the data sources can be found on the NOAA website. There were some gaps in
the NOAA bathymetry layers. These were filled using single beam echosounder data collected during the 2022
and 2024 cruises and GEBCO bathymetry (www.gebco.net/data_and_products/gridded_bathymetry_data).
The single beam echosounder data and GEBCO bathymetry was sampled into the missing grids in the NOAA
bathymetry, with preference to the single beam echosounder data.

From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). Slope was calculated from the nearest 8 neighbors and TPI was calculated
with a focal distance of ~300 m.

Northness was calculated as the cosine of the aspect (direction relative to 0 degrees that the slope was facing)
for each grid cell based on bathymetry.

Oxygen data were based on the World Ocean Atlas data (2018 update). These data were clipped to the
area of interest and resampled into the bathymetry grid using bilinear interpolation. The five explanatory
variables are shown in Figure 59.

7.3.3 Native spatial and temporal resolution of the independent data

The native spatial resolution of the NOAA bathymetry was 3 arc-second grid. The native spa-
tial resolution for the Oxygen data was 0.5 degrees longitude and latitude. It should be noted
that the Oxygen data sources are conglomerations of data collected over varying spatial and tem-
poral scales (e.g. the temporal scale is since ~1900’s in the case of some measurements). For
complete documentation of the spatial and temporal scale of the raw data the NODC respective
website should be consulted (www.gebco.net/data_and_products/gridded_bathymetry_data and
https://www.nodc.noaa.gov/OC5/woa18/).

All independent data layers were trimmed to include only observations and explanatory variables from this
region and to depths of 1250 m.
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7.3.4 Data processing and scaling (method for downscaling or aggregation)

Both the bathymetry (for gap filling) and oxygen layers were downscaled to a 100 m by 100 m grid in order
to match the scale of the bathymetry. This downscaling was completed using bilinear interpolation.

7.3.4.1 Goodness of fit for downscaled aggregated data The downscaled data at the dependent
data sites for both Oxygen and bathymetry represented the lower resolution very well (r > 0.9).

7.3.4.2 Measurement errors and bias Measurement errors in the data or bias in the data were not
accounted for beyond the processing conducted on the raw measurements by GEBCO or NODC.

7.3.5 Derivation methods and calculations for derived variables

From the bathymetry three derived variables (aspect, slope and topographic position index) were calculated
using the raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see
below) to a 100 m by 100 m grid. The aspect variable was then converted to northness using a cosine function.

7.3.6 Rationale for inclusion of independent variables clearly stated and ecologically relevant

These five variables (depth, slope, topographic position index, northness and oxygen) have been found in
previous studies to influence the distribution of Pennatulaceans (Huff et al., 2013, Yesson et al., 2017, Etnoyer
et al., 2018).

7.4 Modelling approach
In this study generalized additive models (GAM) were developed to predict species distribution (Wood 2006).

7.4.1 Model steps

7.4.1.1 Code for model provided The code and data used for this model are not currently publicly
available, but can be availabe on request from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

7.4.1.2 Packages used are referenced The packages used to develop this model are referenced in the
above .Rmd file. The key packages used were “sf”, “rnaturalearth”,“ggplot2”,“rgdal”,“rgeos”,“gstat”,“raster”,“mgcv”
and are all available for download from CRAN. The R version used here was R version 3.6.0 (2019-04-26) –
“Planting of a Tree” (R Core Development Team 2019).

7.4.1.3 Data is made available as supplementary material The independent variables are available
from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

7.4.2 Biases (spatial, temporal and other) acknowledged and described

There were no inherent biases in the modeling method (although there may be biases in the dependent and
independent data described above).

7.4.3 Methods and approaches to collinearity in independent variables

7.4.3.1 Collinearity in independent variables The five explanatory variables were examined for
collinearity using a pearson correlations (Figure 60). Variance inflation inflation factors (Zuur et al. 2002)
were also examined. In both cases the values were low, suggesting that the variables were fairly independent
of each other.

Table 2. Variance inflation factors for independent variables using in modeling.
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Variable VIF
Depth 3.592
Slope 1.231
TPI 1.091
Oxygen 3.372
Northness 1.065

7.4.3.2 Criteria for variable/dimension reduction provided None of the variance inflation factors
exceeded 5, indicating that dimension reduction was not warranted.

7.4.4 Choice of modelling method is explained and justified

The modelling method chosen was a generalized additive model (GAM). This model was primarily chosen for
its simplicity of assumptions (stated below), its usefulness in fitting binomial (presence-absence) data, and
the many previous applications of this method to predicting species distributions.

7.4.4.1 Modelling assumptions are clearly stated The basic GAM assumptions are; 1) Independence
among data points, 2) The distribution of the residuals is binomially distributed, 3) homogenous variance
across the fitted values, and 4) a non-linear relationship between response and predictor.

7.4.4.2 Potential violations of model assumptions are explored Diagnostic plots of Pearson
residuals are shown in Figure 61. The residuals did not indicate any serious violations of GAM assumptions.

7.4.5 Model application

To build the model of Pennatulaceans a generalized additive model was constructed that contained five
explanatory variables (depth, slope, topographic position index, northness and oxygen). The dependent data
was presence or absence of Pennatulaceans. The full model was

y = α + s(depth) + s(slope) + s(TPI) + s(northness) + s(O2) + σ

A binomial error distribution (σ) was used for the model fitting. A full model was fit initially containing all
the variables with a basis degrees of freedom of 4 for each smooth. This model was reduced sequentially by
removing the least significant term and comparing the AIC for the resulting reduced model following the
methods of Rooper et al. (2016). This was repeated until there was a decline in model skill when removing a
variable.

7.4.5.1 Model settings The default GAM settings in R were used (see CobbSDM_Pennatulacean.Rmd).
The only setting that was modified was the specification of the binomial error distribution and the specified
number of knots for the smooth of k = 4.

7.4.5.2 Model complexity is assessed The results of the sequential variable reduction resulted in the
retention of 3 terms; slope, O2, northness. The deviance explained by the model (D2) was 0.385.

The model complexity was assessed against simpler models with less terms during the sequential variable
reduction step and the most complex model (containing these terms) was found to be the most appropriate
(Table 3).

Table 3. Summary of GAM model predicting presence or absence of Pennatulaceans.

Term edf F p-value
slope 1.000 6.112 0.0134
O2 2.935 9.941 0.0187

109



PRELIM
IN

ARY

Term edf F p-value
northness 2.912 10.037 0.0166
residual 69.153
GCV 0.054
Deviance explained (%) 38.500

7.4.6 Model response curves are generated (where appropriate) and compared to expectations

Model response curves are shown in Figure 62. Probability of presence of Pennatulaceans decreased with
increasing slopes and was highest when those slopes were more west facing at low oxygen areas. None of the
results were abnormal or unexpected.

7.4.6.1 Modelling method-specific term estimates or coefficients are reported (where relevant)
The model specific term estimates are provided in Table 4.

Table 4. Model coefficients, significance and standard error estimates for GAM predicting Pennatulaceans
probability of presence.

x
(Intercept) 0.617
s(slope).1 0.000
s(slope).2 0.000
s(slope).3 -0.877
s(O2).1 9.620
s(O2).2 -19.263
s(O2).3 12.413
s(northness).1 5.779
s(northness).2 -4.210
s(northness).3 -5.498

7.4.6.2 Independent variable importance is reported The relative importance of variables in the
model was measured by sequentially removing the individual variables, fitting a new model and calculating
the deviance explained. The deviance explained was then scaled to the full model to determine the relative
drop in model goodness-of-fit with removal of each variable. The results showed that slope was the least
important variable determining the probability of Pennatulaceans presence, and Oxygen and northness were
the most important (Figure 63).

7.5 Model uncertainty
7.5.1 Model specific goodness of fit statistics have been checked and reported

The Pennatulaceans model AUC was 0.883, an excellent model according to the standards of Hosmer et al.,
(2013).

Using a threshold of 0.6 resulted in prediction of 32 of the 41 observed presences correctly, while predicting
about 86% of the absences correctly (sensitivity = 0.78 and specificity = 0.861).

Table 5. Confusion matrix of predicted and observed presence and absence of Pennatulaceans using a
probability threshold 0.6.

Observed
Predicted Presence Absence
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Observed
Presence 32 5
Absence 9 31

7.5.1.1 Multiple measures of goodness of fit have been examined Commonly used goodness-of-fit
measures for binomial models are provided in Table 5 for the GAM predicting Pennatulaceans probability of
presence. These include the True Skill Statistic (Allouche et al., 2006), the root-mean-squared-error and the
Spearman’s rank correlation. Other threshold dependent metrics can be calculated from the confusion matrix
(Table 4).

Model diagnostics indicated no issues with the prediction of presence or absence (Figure 64).

7.5.2 Spatial autocorrelation in the residuals has been assessed and reported

There was not significant spatial autocorrelation in the model residuals measured by Moran’s I (I = 0.27).
This was not unexpected given the random-stratified sample design of observations in the study area.

7.5.3 Residuals have been tested against assumed distribution (where appropriate)

Not applicable for the binomial distribution. Figure 61 shows model residuals (on the logit scale are shown
for each data point used to model Pennatulaceans and diagnostics.

7.5.3.1 Spatial patterns in residuals Model residuals are shown in Figure 65. This confirms the results
of the Moran’s I, with little evidence of spatial patterns in the residuals.

7.6 Model validation
7.6.1 Training and testing data splitting method

Both internal model validation method and independent data was used as a validation data set. K-fold
cross-validation was used here. Five (k) folds were chosen at random.

7.6.1.1 Potential spatial biases were accounted for in splitting the data The spatial blocking
method (Valvani et al., 2019) was not used to split the data for the internal cross-validation.

7.6.1.2 A standard method used for cross-validation k-fold cross-validation is a standard method.
The data was divided into 5 equal portions and a model then fit to 80% of the data and tested against
the remaining 20% of the data. This was repeated for each subdivision of the data. The same maps and
diagnostics were produced for each model fit on the k-folds.

The data folds appeared to show the same patterns as the full model.

The model performance was similar for all the training data sets (the full model and the individual folds).
The performance of the model on the testing folds was except for the True Skill Statistic and AUC for model
fold 5 was very poor, indicating some potential issues with model performance.

7.6.2 Truly independent data used for model validation

The presence and absence observations from 58 transects completed in 2024 was also used to test the models
developed on the 2022 survey data.

The Pennatulaceans model AUC was 0.524, an poor performing model according to the standards of Hosmer
et al., (2013).

Using a threshold of 0.6, 0.6 resulted in prediction of 5 of the 19 observed presences correctly, while predicting
about 72% of the absences correctly (sensitivity = 0.263 and specificity = 0.718).
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Table 6. Confusion matrix of predicted and observed presence and absence of Pennatulaceans using a
probability threshold 0.6, 0.6 for the independently collected data set in 2024.

Observed
Predicted Presence Absence
Presence 5 11
Absence 14 28

Table 6. Model goodness of fit measures for the full model and the individual model validation folds

Fold AIC threshold AUC_training AUC_testing TSS_training TSS_testing
Full model 81.127 0.600 0.883 NA 0.642 NA
Fold_1 62.974 0.570 0.904 0.727 0.642 0.477
Fold_2 66.404 0.370 0.881 0.810 0.699 0.317
Fold_3 69.045 0.525 0.876 0.870 0.635 0.611
Fold_4 72.446 0.650 0.854 0.952 0.632 0.460
Fold_5 61.262 0.360 0.915 0.571 0.698 -0.107

Fold Cor_training Cor_testing RMSE_training RMSE_testing
Full model 0.663 NA 0.374 NA
Fold_1 0.700 0.349 0.354 0.476
Fold_2 0.660 0.533 0.367 0.421
Fold_3 0.646 0.630 0.375 0.375
Fold_4 0.609 0.779 0.398 0.318
Fold_5 0.718 0.124 0.340 0.540

7.7 Model outputs
7.7.1 Maps of model predictions, model residuals and prediction error

Maps of model predictions are provided in Figure 67. Maps of residuals in Figure 65. Maps of prediction
error in Figure 68. The model predicted that the highest probability of presence for Pennatulaceans was on
the west facing slopes of seamounts and at specific patches near seamount summits.

7.7.2 Areas of model extrapolation are clearly defined

The model was not extrapolated outside the five seamounts, although within this region, there were some
areas with little or no sampling. The model was extrapolated at depths from 850 - 1250 m where no sampling
occurred.

7.7.3 The prediction unit is clearly defined (and explained if necessary)

The prediction unit is the probability of presence or absence of Pennatulaceans.

7.7.4 Thresholding methods (for dichotomising probability into presence or absence) are
clearly described and appropriate

No thresholding was done (beyond the thresholding for calculating goodness-of-fit measures). Probability of
presence is presented as the result.
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7.7.4.1 The sensitivity of model outcomes to threshold value chosen has been explored
Sensitivity to threshold values was not explored, but in a formal analysis of the model could be completed
using the provided model outputs.

7.8 Conclusions
The Pennatulaceans model fit the observations from 2022 well. The internal model validation showed generally
robust results. However, the independently collected data were predicted with poor accuracy.

Model response curves showed the importance of oxygen and northness as predictors. On west facing (and
lower) slopes with low oxygen there was a high probability of Pennatulaceans presence at all seamounts on a
randomly chosen transect.
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Figure 60: Correlation among independent variables used in modeling.
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Figure 61: Diagnostic plots for GAM model assumptions.
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Figure 62: Response curves for independent variables used best-fitting GAM for presence or absence.
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Figure 63: Relative importance of variables included in the Pennatulacean presence or absence GAM measured
by their contribution to deviance explained when sequentially removed from the model.
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Figure 64: Model diagnostic plots for Pennatulacean presence or absence GAM.
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8 Vulnerable Marine Indicator Taxa Group: Hydrocorals
8.1 Study resolution
8.1.1 Location of the study area (or management region)

This modelling was carried out for five seamounts in the Northeastern Pacific Ocean where fisheries are
managed by the North Pacific Fisheries Commission. The five seamounts are shown in Figure 1 and are part
of the Cobb-Eickelberg seamount chain.

8.1.1.1 Spatial extent of the modelled area The specific seamounts modeled were five North Pacific
Seamounts (Cobb, Brown Bear, Eickelberg, Warwick and Corn). Modeling was conducted from depths of 0 -
1250 m. Data was collected from 0 to ~850 m.

8.1.1.2 Spatial resolution of the model and independent variables The spatial resolution of the
modeling was 100 m by 100 m grid cells. The all data was projected into an Albers equal area projection (proj4
description = “+proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs”).

8.1.1.3 Spatial precision (of observations and independent variables) The spatial precision of
the observations was taken from the gps mounted on the research vessel. Based on tracking information, the
camera system was towed slightly behind the vessel (~200 m typically), but along the same path as the vessel.
The anticipated precision of the varation of the camera path was expected to be less than 20 m across the
trackline.

8.1.1.4 Depth resolution/range/extent (of the observations and independent variables) The
depth range of the observations of Hydrocorals (from the depth sensor mounted on the camera) was from 61
to 808 m (mean = 442 m, SE = 206.28). The depth range of the modeled area was from 34 (the summit
depth of Cobb Seamount) to 1250 m.

8.1.2 Temporal extent of the data

8.1.2.1 Dates of data extent The dates observations used in model development were collected were
September 6, 2022 to September 20, 2022. The dates for observations used for model testing were from
September 3, 2024 to September 11, 2024.

8.1.2.2 Precision of date/time The precision of the date and the time of the data was assumed to be
the closest second.

8.1.2.3 Data/time resolution The resolution of the date and time was fraction of a second.

8.1.2.4 Impacts over time to consider in the data set (e.g. historical fishing effort) Fishing
occurred over the entire time frame from which these data points were collected. Fishing also has occured
historically since the 1970’s. We did not attempt to account for historical fishing effort over this time. There
may have been climate impacts occurring over the time frame of the data observations as well, however, these
were not accounted for in the analyses.

8.2 Dependent data
The dependent data are shown in Figure 69.

Table 1. Number of records for each taxonomic grouping in the order Hydrocorals from the survey database.
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Species or Taxa group Count
Stylasteridae 1340

8.2.1 Data type (presence, absence, abundance)

The data used for modeling Hydrocorals distribution were observed presences (n = 36) and absences (n = 41)
that occurred at the five seamounts.

8.2.2 Data source (e.g. type of survey(s) combined)

The data were entirely from random stratified surveys of the Cobb-Eickelberg seamount chain conducted in
2022.

8.2.3 Measure of sampling effort

Sampling effort was estimated by the distance the camera traveled along each transect multiplied by the field
of view observed along the transect (Rooper et al. 2016). This provided an area observed for each transect
which was used as the effort measure. Area observed ranged from 254 to 2469 mˆ2 with a median area
observed of 1197 mˆ2.

8.2.4 Detectability

Detectability of the width of the viewing area of the camera along the transect (area observed) was assumed
to be 100% for VME indicator taxa. However, there were likely some individuals that were too small to be
detected.

8.2.5 Taxonomic level

The taxonomic level modeled here was the taxonomic group Hydrocorals (see Table 1 for individual families
included in this grouping and refer to CMM for NPFC definitions).

8.2.6 Functional attributes (its ecology)

Hydrocorals are a diverse, long-lived and fragile species. They occur in deep-water and are habitat forming
structures important to many fishes, invertebrates other taxonomic groups.

8.2.7 Taxonomic confidence of species/assemblages

The taxonomic confidence of the assemblage was assumed to be good. Experts experienced in identification
of corals and sponges from visual imagery in the North Pacific Ocean did all the identification and image
analyses.

8.2.8 Rationale for taxonomic/assemblage level modeled

Hydrocorals as defined here are a group that shares common habitat requirements and depth distribution.
They are closely related and the order is globally distributed at deep depths. This Order has been previously
modelled using Maximum entropy methods on a global extent and regional extent (Yesson et al., 2017, Chu
et al. 2018, Doherty et al. 2019).

8.2.9 Source of absence data

Absences were observations of no individuals at transects. In total there were 41 absences in the dataset.
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8.2.10 Other potential errors or biases in the data

There are some potential sources of error in the data, including errors in positioning of the records, errors in
species identification (including both false positives and false negatives).

8.2.11 Data filtering steps

No data filtering was conducted.

8.2.12 Taxonomic aggregation steps

The records for the Order Hydrocorals were aggregated by transect into presence or absence observations.

8.2.13 Method for combining dependent data sources (if done outside the modelling)

No other dependent data sources were used in this modelling.

8.3 Independent data
8.3.1 Independent data (environmental variables used)

Five independent variables were used in building a model of Hydrocorals distribution; bathymetry, topographic
position index, seafloor slope, Oxygen concentration and northness (Figure 70).

8.3.2 Independent data source (source of raw or derived data)

The bathymetry used here was downloaded from the NOAA website (https://www.ncei.noaa.gov/maps/
bathymetry/). It consists of gridded bathymetry from a multibeam sources on a 3 arc-second grid for the
region of interest. The details of the data sources can be found on the NOAA website. There were some gaps in
the NOAA bathymetry layers. These were filled using single beam echosounder data collected during the 2022
and 2024 cruises and GEBCO bathymetry (www.gebco.net/data_and_products/gridded_bathymetry_data).
The single beam echosounder data and GEBCO bathymetry was sampled into the missing grids in the NOAA
bathymetry, with preference to the single beam echosounder data.

From the bathymetry two derived variables (slope and topographic position index) were calculated using the
raster package (Hijmans 2019). Slope was calculated from the nearest 8 neighbors and TPI was calculated
with a focal distance of ~300 m.

Northness was calculated as the cosine of the aspect (direction relative to 0 degrees that the slope was facing)
for each grid cell based on bathymetry.

Oxygen data were based on the World Ocean Atlas data (2018 update). These data were clipped to the
area of interest and resampled into the bathymetry grid using bilinear interpolation. The five explanatory
variables are shown in Figure 70.

8.3.3 Native spatial and temporal resolution of the independent data

The native spatial resolution of the NOAA bathymetry was 3 arc-second grid. The native spa-
tial resolution for the Oxygen data was 0.5 degrees longitude and latitude. It should be noted
that the Oxygen data sources are conglomerations of data collected over varying spatial and tem-
poral scales (e.g. the temporal scale is since ~1900’s in the case of some measurements). For
complete documentation of the spatial and temporal scale of the raw data the NODC respective
website should be consulted (www.gebco.net/data_and_products/gridded_bathymetry_data and
https://www.nodc.noaa.gov/OC5/woa18/).

All independent data layers were trimmed to include only observations and explanatory variables from this
region and to depths of 1250 m.
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8.3.4 Data processing and scaling (method for downscaling or aggregation)

Both the bathymetry (for gap filling) and oxygen layers were downscaled to a 100 m by 100 m grid in order
to match the scale of the bathymetry. This downscaling was completed using bilinear interpolation.

8.3.4.1 Goodness of fit for downscaled aggregated data The downscaled data at the dependent
data sites for both Oxygen and bathymetry represented the lower resolution very well (r > 0.9).

8.3.4.2 Measurement errors and bias Measurement errors in the data or bias in the data were not
accounted for beyond the processing conducted on the raw measurements by GEBCO or NODC.

8.3.5 Derivation methods and calculations for derived variables

From the bathymetry three derived variables (aspect, slope and topographic position index) were calculated
using the raster package (Hijmans 2019). These variables were calculated on bathymetry aggregated (see
below) to a 100 m by 100 m grid. The aspect variable was then converted to northness using a cosine function.

8.3.6 Rationale for inclusion of independent variables clearly stated and ecologically relevant

These five variables (depth, slope, topographic position index, northness and oxygen) have been found in
previous studies to influence the distribution of Hydrocorals (Huff et al., 2013, Yesson et al., 2017, Etnoyer et
al., 2018).

8.4 Modelling approach
In this study generalized additive models (GAM) were developed to predict species distribution (Wood 2006).

8.4.1 Model steps

8.4.1.1 Code for model provided The code and data used for this model are not currently publicly
available, but can be availabe on request from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

8.4.1.2 Packages used are referenced The packages used to develop this model are referenced in the
above .Rmd file. The key packages used were “sf”, “rnaturalearth”,“ggplot2”,“rgdal”,“rgeos”,“gstat”,“raster”,“mgcv”
and are all available for download from CRAN. The R version used here was R version 3.6.0 (2019-04-26) –
“Planting of a Tree” (R Core Development Team 2019).

8.4.1.3 Data is made available as supplementary material The independent variables are available
from Chris Rooper (chris.rooper@dfo-mpo.gc.ca).

8.4.2 Biases (spatial, temporal and other) acknowledged and described

There were no inherent biases in the modeling method (although there may be biases in the dependent and
independent data described above).

8.4.3 Methods and approaches to collinearity in independent variables

8.4.3.1 Collinearity in independent variables The five explanatory variables were examined for
collinearity using a pearson correlations (Figure 71). Variance inflation inflation factors (Zuur et al. 2002)
were also examined. In both cases the values were low, suggesting that the variables were fairly independent
of each other.

Table 2. Variance inflation factors for independent variables using in modeling.
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Variable VIF
Depth 3.592
Slope 1.231
TPI 1.091
Oxygen 3.372
Northness 1.065

8.4.3.2 Criteria for variable/dimension reduction provided None of the variance inflation factors
exceeded 5, indicating that dimension reduction was not warranted.

8.4.4 Choice of modelling method is explained and justified

The modelling method chosen was a generalized additive model (GAM). This model was primarily chosen for
its simplicity of assumptions (stated below), its usefulness in fitting binomial (presence-absence) data, and
the many previous applications of this method to predicting species distributions.

8.4.4.1 Modelling assumptions are clearly stated The basic GAM assumptions are; 1) Independence
among data points, 2) The distribution of the residuals is binomially distributed, 3) homogenous variance
across the fitted values, and 4) a non-linear relationship between response and predictor.

8.4.4.2 Potential violations of model assumptions are explored Diagnostic plots of Pearson
residuals are shown in Figure 72. The residuals did not indicate any serious violations of GAM assumptions.

8.4.5 Model application

To build the model of Hydrocorals a generalized additive model was constructed that contained five explanatory
variables (depth, slope, topographic position index, northness and oxygen). The dependent data was presence
or absence of Hydrocorals. The full model was

y = α + s(depth) + s(slope) + s(TPI) + s(northness) + s(O2) + σ

A binomial error distribution (σ) was used for the model fitting. A full model was fit initially containing all
the variables with a basis degrees of freedom of 4 for each smooth. This model was reduced sequentially by
removing the least significant term and comparing the AIC for the resulting reduced model following the
methods of Rooper et al. (2016). This was repeated until there was a decline in model skill when removing a
variable.

8.4.5.1 Model settings The default GAM settings in R were used (see CobbSDM_Hydrocoral.Rmd).
The only setting that was modified was the specification of the binomial error distribution and the specified
number of knots for the smooth of k = 4.

8.4.5.2 Model complexity is assessed The results of the sequential variable reduction resulted in the
retention of 4 terms; depth, TPI, slope, O2. The deviance explained by the model (D2) was 0.317.

The model complexity was assessed against simpler models with less terms during the sequential variable
reduction step and the most complex model (containing these terms) was found to be the most appropriate
(Table 3).

Table 3. Summary of GAM model predicting presence or absence ofHydrocorals.

Term edf F p-value
depth 2.949 14.674 0.0018
TPI 1.988 5.003 0.0914
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Term edf F p-value
slope 1.965 2.954 0.2816
O2 1.000 2.286 0.1305
residual 68.098
GCV 0.175
Deviance explained (%) 31.700

8.4.6 Model response curves are generated (where appropriate) and compared to expectations

Model response curves are shown in Figure 73. The probability of presence of Hydrocorals was highest above
500 m depth at low oxygen regions. The probability of presence was also higher in when TPI values were
around zero and in modererate slopes. None of the results were abnormal or unexpected.

8.4.6.1 Modelling method-specific term estimates or coefficients are reported (where relevant)
The model specific term estimates are provided in Table 4.

Table 4. Model coefficients, significance and standard error estimates for GAM predicting Hydrocorals
probability of presence.

x
(Intercept) -0.507
s(depth).1 -5.347
s(depth).2 4.592
s(depth).3 2.257
s(TPI).1 3.241
s(TPI).2 5.868
s(TPI).3 -1.929
s(slope).1 0.295
s(slope).2 2.302
s(slope).3 0.483
s(O2).1 0.000
s(O2).2 0.000
s(O2).3 -0.805

8.4.6.2 Independent variable importance is reported The relative importance of variables in the
model was measured by sequentially removing the individual variables, fitting a new model and calculating
the deviance explained. The deviance explained was then scaled to the full model to determine the relative
drop in model goodness-of-fit with removal of each variable. The results showed that slope was the least
important variable determining the probability of Hydrocorals presence, and TPI and depth were the most
important (Figure 74).

8.5 Model uncertainty
8.5.1 Model specific goodness of fit statistics have been checked and reported

The Hydrocorals model AUC was 0.849, an excellent model according to the standards of Hosmer et al.,
(2013).

Using a threshold of 0.46 resulted in prediction of 29 of the 36 observed presences correctly, while predicting
about 76% of the absences correctly (sensitivity = 0.806 and specificity = 0.756).

Table 5. Confusion matrix of predicted and observed presence and absence of Hydrocorals using a probability
threshold 0.46.
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Observed
Predicted Presence Absence
Presence 29 10
Absence 7 31

8.5.1.1 Multiple measures of goodness of fit have been examined Commonly used goodness-of-fit
measures for binomial models are provided in Table 5 for the GLM predicting Hydrocorals probability of
presence. These include the True Skill Statistic (Allouche et al., 2006), the root-mean-squared-error and the
Spearman’s rank correlation. Other threshold dependent metrics can be calculated from the confusion matrix
(Table 4).

Model diagnostics indicated no issues with the prediction of presence or absence (Figure 75).

8.5.2 Spatial autocorrelation in the residuals has been assessed and reported

There was marginally significant spatial autocorrelation in the model residuals measured by Moran’s I (I =
0.047). This was unexpected given the random-stratified sample design of observations in the study area.

8.5.3 Residuals have been tested against assumed distribution (where appropriate)

Not applicable for the binomial distribution. Figure 72 shows model residuals (on the logit scale are shown
for each data point used to model Hydrocorals and diagnostics.

8.5.3.1 Spatial patterns in residuals Model residuals are shown in Figure 76. This confirms the results
of the Moran’s I, with some evidence of clumped spatial patterns in the residuals, especially on Brown Bear
seamount.

8.6 Model validation
8.6.1 Training and testing data splitting method

Both internal model validation method and independent data was used as a validation data set. K-fold
cross-validation was used here. Five (k) folds were chosen at random.

8.6.1.1 Potential spatial biases were accounted for in splitting the data The spatial blocking
method (Valvani et al., 2019) was not used to split the data for the internal cross-validation.

8.6.1.2 A standard method used for cross-validation k-fold cross-validation is a standard method.
The data was divided into 5 equal portions and a model then fit to 80% of the data and tested against
the remaining 20% of the data. This was repeated for each subdivision of the data. The same maps and
diagnostics were produced for each model fit on the k-folds.

The data folds appeared to show the same patterns as the full model.

The model performance was similar for all the training data sets (the full model and the individual folds).
However the performance of the model on the testing folds was less impressive. For example, the True Skill
Statistic and AUC for model folds 5 was very poor, indicating some potential issues with model performance.

8.6.2 Truly independent data used for model validation

The presence and absence observations from 58 transects completed in 2024 was also used to test the models
developed on the 2022 survey data.

The Hydrocorals model AUC was 0.749, a good performing model according to the standards of Hosmer et
al., (2013).
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Using a threshold of 0.46, 0.46 resulted in prediction of 17 of the 22 observed presences correctly, while
predicting about 67% of the absences correctly (sensitivity = 0.773 and specificity = 0.667).

Table 6. Confusion matrix of predicted and observed presence and absence of Hydrocorals using a probability
threshold 0.46, 0.46 for the independently collected data set in 2024.

Observed
Predicted Presence Absence
Presence 17 12
Absence 5 24

Table 6. Model goodness of fit measures for the full model and the individual model validation folds

Fold AIC threshold AUC_training AUC_testing TSS_training TSS_testing
Full model 90.491 0.460 0.849 NA 0.562 NA
Fold_1 76.070 0.325 0.857 0.648 0.563 0.056
Fold_2 71.291 0.575 0.874 0.719 0.629 0.250
Fold_3 71.546 0.490 0.866 0.760 0.652 0.100
Fold_4 74.360 0.605 0.856 0.778 0.565 0.492
Fold_5 72.610 0.420 0.872 0.500 0.590 -0.115

Fold Cor_training Cor_testing RMSE_training RMSE_testing
Full model 0.603 NA 0.400 NA
Fold_1 0.613 0.252 0.397 0.498
Fold_2 0.646 0.380 0.381 0.484
Fold_3 0.626 0.426 0.380 0.507
Fold_4 0.615 0.478 0.392 0.451
Fold_5 0.641 0.000 0.384 0.595

8.7 Model outputs
8.7.1 Maps of model predictions, model residuals and prediction error

Maps of model predictions are provided in Figure 78. Maps of residuals in Figure 76. Maps of prediction
error in Figure 79. The model predicted that the highest probability of presence for Hydrocorals was in a
band from 200-400 m and deeper and in some patchy areas near the summits of seamounts.

8.7.2 Areas of model extrapolation are clearly defined

The model was not extrapolated outside the five seamounts, although within this region, there were some
areas with little or no sampling. The model was extrapolated at depths from 850 - 1250 m where no sampling
occurred.

8.7.3 The prediction unit is clearly defined (and explained if necessary)

The prediction unit is the probability of presence or absence of Hydrocorals.

8.7.4 Thresholding methods (for dichotomising probability into presence or absence) are
clearly described and appropriate

No thresholding was done (beyond the thresholding for calculating goodness-of-fit measures). Probability of
presence is presented as the result.
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8.7.4.1 The sensitivity of model outcomes to threshold value chosen has been explored
Sensitivity to threshold values was not explored, but in a formal analysis of the model could be completed
using the provided model outputs.

8.8 Conclusions
The Hydrocorals model fit the observations from 2022 well. The internal model validation showed robust
results. The independently collected data were predicted with good accuracy.

Model response curves showed the importance of depth. At depths from 200-400 m, there was a high
probability of Hydrocorals presence at all seamounts on a randomly chosen transect.
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Figure 71: Correlation among independent variables used in modeling.
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Figure 72: Diagnostic plots for GAM model assumptions.
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Figure 73: Response curves for independent variables used best-fitting GAM for presence or absence.
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Figure 74: Relative importance of variables included in the Hydrocoral presence or absence GAM measured
by their contribution to deviance explained when sequentially removed from the model.
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Figure 75: Model diagnostic plots for Hydrocoral presence or absence GAM.
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9 Summary
Models were successfully constructed and tested using the survey data collected in 2022 and 2024 at Cobb-
Eickelberg seamount chain. Most of these models showed good to excellent performance on training data,
but were less accurate when tested either against random subsets of the data or against the independently
collected data.

Gorgonian models generally performed well in both training and testing scenarios. These models predicted
high probability of encountering Gorgonians at depths less than 600 m across all seamounts. Similarly, the
Antipatharian models were good peformers and predicted high probability of presence at depths below 350 m.

Scleractinian reefs were observed at only about 10% of transects in 2022. This made their presence or absence
difficult to model. Although the training models performed well, when tested against independently acquired
data the models were deficient. Most of the observations of Scleractinian reefs were at depths above 400 m.
More work should be done on this important taxa group.

For sponges, both the demosponge and hexactinellid models performed well against training and testing
data sets. Hexactinellids were predicted to have high probabilities of presence below 500 m depth, while
demosponges were more prevalent near the summits of seamounts at depths less than 500 m.

Pennatulacean were predicted to occur on westward facing slopes in regions of low oxygen. The models
performed well against both the training and internal testing data. However they did not perform well when
tested against the survey data from 2024.

Hydrocoral models performed well for all training and testing scenarios. The model showed that hydrocorals
are most prevalent in a band of depths from ~200 - 400 m.

Overall, the models generally fit well and produce useful predictions. At deeper depths there are generally
uniformly high probabilities of finding at least one VME indicator taxa. This reflects the overall high
occurrence rate of these taxa at the deeper transects.

More work could be done to incorporate additional variables that might explain some of the variability on
a smaller scale. It has been noted that densities of VME indicator taxa were relatively low at most of the
seamounts, so modeling of the density data should be a next step in order to identify areas of high density of
VME indicator taxa.
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