NPFC-2025-TWG CMSA10-WP08 February 28-March 4, 2025 @Virtual

Standardized abundance index for recruitment of chub mackerel from Northwest Pacific summer surveys up to 2024

Shota Nishijima, Kazunari Higashiguchi Yasuhiro Kamimura, Momoko Ichinokawa, and Ryuji Yukami

Fisheries Resources Institute, Japan Fisheries Research and Education Agency (FRA)

Summer surveys by Japan

Fig. 1A

Effort (h)

 The standardized CPUE (catch number divided by sweeping time) of age 0 fish of CM has long been used as a recruitment index in the Japanese domestic stock assessment

Year	Nu obse (st	mber of ervations cations)	Total sweeping time (h)	Total swept area (km ²)	Total catch (ind)	Nu obs with	umber of servations h positive catch	Percentage of positive catch (%)
2001		58	59.00	12.02	113.5		9	15.52
2002		93	93.00	18.26	259.0		17	18.28
2003		157	155.37	30.55	4063.8		15	9.55
2004		179	178.50	36.35	21262.5		24	13.41
2005		164	162.95	31.12	2389.0		16	9.76
2006		163	162.63	30.19	39.0		3	1.84
2007		155	154.50	29.58	36441.0		24	15.48
2008		169	169.00	33.08	6024.0		16	9.47
2009		168	168.02	39.43	5568.0		25	14.88
2010		126	126.18	24.88	2504.0		18	14.29
2011		97	97.00	17.48	363.5		12	12.37
2012		135	134.85	25.12	4745.5		20	14.81
2013		125	122.48	26.27	183151.5		17	13.60
2014		122	108.95	20.29	884.8		5	4.10
2015		121	121.00	22.99	4358.6		19	15.70
2016		122	121.47	22.73	81005.6		32	26.23
2017		129	128.65	24.18	68441.9		18	13.95
2018		104	97.93	18.74	192845.9		23	22.12
2019		134	134.00	28.27	9998.5		26	19.40
2020		67	66.20	11.53	29231.4		28	41.79
2021		143	136.45	32.21	250694.6		60	41.96
2022		156	154.61	30.76	100144.9		55	35.26
2023		143	142.77	28.44	41228.2		53	37.06
2024		139	136.97	23.88	35726.4		20	14.39

- 100~300 individuals of 'mackerel' (chub + blue) were sampled per station
- Percentages of positive catch were over 35%, but became less than 15% in 2024
- Sampling stations in 2001 and some stations without water temperature data were removed

Map of catch and CPUE of age-0 CM fish

Fig. 1B: Catch

Fig. 1C: CPUE

- Catch and CPUE patterns are quite similar because of effort is almost 1 (hour)
- Age 0 fish of CM were likely to be caught in southern areas

Principal component analysis (PCA)

- Collinearity in covariates could destabilize parameter estimates
 →problematic in the interpretation of results and model predictions
- Conducted the PCA and used PC1 and PC2 calculated from the analysis as orthogonal covariates
- PC1 was negatively correlated with SST and T50, indicating a common component of SST and T50.
- PC2 was positively correlated with SST but negatively with T50, reflecting a difference between SST and T50.

Fig. 3

SST, T50, PC1, and PC2 did not show any systematic patterns over the years

Model description of the VAST

 1^{st} predictor for encounter probability p

2nd predictor for positive catch rate when encountered

The encounter probability transformed the inverse function of logit link

The positive catch rate transformed the inverse function of log (i.e., exp)

The probability density function

$$p_{1}(i) = \beta_{1}(t_{i}) + \omega_{1}(s_{i}) + \varepsilon_{1}(s_{i}, t_{i}) + \sum_{k_{1}}^{n_{k_{1}}} \lambda_{1}(k_{1})Q_{i}(i, k_{1})$$

$$p_{2}(i) = \beta_{2}(t_{i}) + \omega_{2}(s_{i}) + \varepsilon_{2}(s_{i}, t_{i}) + \sum_{k_{2}}^{n_{k_{2}}} \lambda_{2}(k_{2})Q_{i}(i, k_{2})$$
temporal spatial spatio-
temporal spatial spatio-
temporal covariate

$$r_1(i) = \mathrm{logit}^{-1} p_1(i)$$
 ,

 $r_2(i) = a_i \times \log^{-1} p_2(i)$. (*a*_i = 1 in this study)

 $Pr(b_i = B) = \begin{cases} Binomial model \\ \downarrow \\ 1 - r_1(i) & \text{if } B = 0 \\ r_1(i) \times g\{B | r_2(i), \sigma_m^2\} & \text{if } B > 0 \\ \uparrow \\ Function \text{ for } Gamma \text{ distribution} \end{cases}$

Used covariates and other settings

Table 3

Variable	Symbol ¹	Number of categories	Detail	Note	
Year	$\beta(t)$	23	2002-2024	Categorical variable with fixed effect	 The number of knots was set as 100
Spatial	$\omega(s)$	-	Average over years	 Estimated as random effects by SPDE approximation Turned off in the second predictor 	 The effect of year was estimated as a categorical variable by fixed effects
Spatio- temporal	$\varepsilon(s,t)$	-	Assume independence of each year	Estimated as random effects by SPDE approximation	• PC1, PC2, their squared terms, and their 1 st
PC1	$\lambda(k)Q_i(i,k))$	-	Negative correlation for SST and T50	Continuous variable as a catchability covariate	order interaction were treated as catchability
PC1 squared	$\lambda(k)Q_i(i,k))$	-	Squared PC1	Continuous variable as a catchability covariate	
PC2	$\lambda(k)Q_i(i,k))$	-	Positive correlation for SST and negative correlation for T50	Continuous variable as a catchability covariate	Update from 2023
PC2 squared	$\lambda(k)Q_i(i,k))$	-	Squared PC1	Continuous variable as a catchability covariate	 turned off the spatial effect in the second predictor
PC1 X PC2	$\lambda(k)Q_i(i,k))$	-	Interaction between the two PC axes	Continuous variable as a catchability covariate	_

Decie information

Model selection

Table 4

Rank	PC1	PC1 squared	PC2	PC2 squared	PC1xPC2	Df
1	B,G	В	B,G	B,G	В	60
2	B,G	В	B,G	В	В	59
3	B,G	B,G	B,G	B,G	В	61
4	B,G	B,G	B,G	В	В	60
5	B,G	B,G	B,G	B,G	B,G	62
6	B,G	B,G	B,G	В	B,G	61
7	B,G	В	B,G	B,G	B,G	61
8	B,G	В	B,G	G	В	59
9	B,G	В	B,G		В	58
10	B,G	B,G	B,G	G	В	60
11	B,G	B,G	B,G		В	59
12	B,G	B,G	В	В	В	59
13	B,G	B,G	B,G	G	B,G	61
14	B,G	В	B,G	В	B,G	60
15	B,G	В	B,G		B,G	59
16	B,G	В	B,G	G	B,G	60
17	B,G	В	В		В	57
18	В	В	В		В	56
19	В	В	B,G	G	В	58
20	B,G	В	B,G			57

- Model selection was conducted using exhaustive search based on Akaike Information Criterion with correction (AICc).
- Only PC1 squared and 1st order interaction of PC1 and PC2 were not selected for positive catch rate when encountered (G) in the best model

Model diagnostics for scaled residuals

Fig. 6

- Generated scaled residuals using the R package 'DHARMa' (Hartig 2022) for model diagnostics
- This package enables to simulate the scaled residuals which should theoretically follow the uniform distribution from zero to one

Fig. 5 1.00 p = 0.2090.75 Observed 0.50 0.25 Not significantly deviated from the theoretical prediction of the uniform distribution 0.00 0.25 0.50 0.75 0.00 1.00 Theoretical

The averages were not deviated from the theoretical average (0.5) in response to predicted values and covariates

Map of scaled residuals in each year

Fig. 7

Scaled residual

No systematic spatial patterns in scaled residuals

Map of estimated densities

Fig. 8

 Local densities were estimated from the product of encounter probability and positive catch rate when encountered

$$d(s,t) = r_1^*(s,t) \times r_2^*(s,t)$$

- The terms of catchability covariates were dropped off (assuming $\lambda = 0$)
- Estimated densities of young-of-the-year (YOY) fish had been high until 2021, but decreasing thereafter
- The centroid of fish distributions was relatively constant over the years

Relationships between covariates and CPUE

Fig. 9: Partial dependence plots

- Concave-down responses of encounter probability to PC1 and PC2
- a negative response for PC1, a concave-up response for PC2
- SST had a greater influence than T50.
- The probability of positive catch peaked around 17.5° C for SST,
- The overall CPUE is highest at temperatures exceeding 20° C.

Yearly trends of nominal and standardized CPUE

- Standardized CPUE remained low until 2012, but high values were frequently observed since 2013
- Especially in 2013, 2018, and 2021, the values were the highest, but the values are decreasing in the recent 3 years (2022–2024)
- The yearly trend of the standardized CPUE was not greatly different from that of the nominal CPUE

Values and uncertainties of the nominal and standardized CPUE

Table 6

Year	Nominal (ind/h)	Standardized (ind/h)	CV	Lower 95%CI	Upper 95%CI	
2002	2.94	5.49	0.27	1.31	22.91	
2003	26.22	5.93	0.29	1.64	21.48	
2004	132.07	69.13	0.39	12.68	377.02	
2005	15.31	8.53	0.28	2.20	33.02	
2006	0.24	0.19	0.50	0.01	3.57	
2007	236.63	31.40	0.26	9.51	103.67	
2008	37.65	4.48	0.32	1.14	17.64	
2009	33.33	9.31	0.24	3.53	24.51	
2010	19.97	9.92	0.25	2.92	33.78	
2011	3.75	1.97	0.29	0.44	8.82	
2012	35.95	26.78	0.24	7.79	92.03	
2013	1443.45	631.49	0.28	165.37	2411.42	
2014	14.03	7.50	0.40	0.73	77.27	
2015	36.02	50.23	0.23	15.34	164.45	
2016	663.42	240.65	0.25	87.69	660.43	
2017	543.68	483.91	0.22	171.17	1368.04	
2018	2382.26	2146.30	0.24	663.32	6944.81	
2019	74.62	93.35	0.23	27.86	312.76	
2020	443.27	288.37	0.26	76.37	1088.86	
2021	2077.32	1002.57	0.17	502.14	2001.75	
2022	477.73	221.93	0.18	100.04	492.32	
2023	288.17	111.15	0.26	36.49	338.55	
2024	257.07	85.78	0.24	28.51	258.12	

 The coefficient of variation (CV) of the standardized CPUE was in the range of 0.22–0.50 for almost all years