Progress Summary of WG NSAM 2025-01&02

Libin Dai 15th SSC PS meeting 01-05 September 2025

Year	Month-day	Meeting	Track name	Key progress and main changes
2024	June 27-29	WG NSAM 2024-01	Nanaimo→Shanghai	 Decide to prioritize the development of SS Develop and test a list of model scenarios Time-varying q for JPN early CPUE Approximate Gompertz in SS Age-specific survey index Develop a list of priority items
2024	August 02	WG NSAM 2024-02	Shanghai	 Test model runs in terms of steepness, CPUE residual, and fit to size data
2024	August 26-29	SSC PS13	Shanghai→Step 1-3	Try to estimate growth and selectivity parameters within the model
2024	October 17	WG NSAM 2024-03	Step 3→ Step 4-8	 Update standardized CPUE, catch and length composition through 2023 Add 2024 JPN survey
2024	December 11-13&16	SSC PS14	Step 8→Step 9-16	 Nonlinear CPUE and random walk q Undivided CT CPUE Asymptotic selectivity Downweight commercial CPUE Reduce age class and refine growth curve
2025	May 28	WG NSAM 2025-01	Step 16	 Review the modeling work made in 2024 Transition of modeling work to new experts
2025	July 11-13	WG NSAM 2025-02	Step 16→Step 17→ Step 18-21	 Improve annual model and check biological plausibility Introduce and improve seasonal model and test some additional scenarios regarding: Influence of commercial CPUE Steepness (fixed vs. estimated) Post-spawning natural mortality Starting year (1980 vs. 1994) Change in selectivity and growth Add 2024 catch

WG NSAM meetings in 2025

WG NSAM01 (May 28, 2025)

Kick-off meeting

- Introduced the background of the WG and reviewed progress made in 2024.
- Reviewed the Step16 SS model developed by Dr. Larry Jacobson.
- Dr. Quang Huynh provided feedback on an earlier model (Step7) and offered suggestions.
- Established a timeline and work plan for meetings and deliverables in 2025.

WG NSAM02 (July 11-13, 2025)

Technical meeting

- Examined the structure of the Step16 model and its variant (Step17).
- Introduced and reviewed the seasonal model (Step18).
- Developed and discussed additional case scenarios (Step19–21).
- Introduced the Japanese survey.
- Summarized candidate case scenarios for potential use as base case(s) in future work.

Meeting arrangement for WG NSAM02

Day 1

Agenda Item 1-4

- ✓ Opening of the Meeting
- ✓ Adoption of Agenda
- ✓ Overview of development progress of new stock assessment models for Pacific saury
- ✓ Stock Synthesis 3

Day 2-3

Agenda Item 4-9

- ✓ Stock Synthesis 3
- ✓ State-space age-structured model
- ✓ Data gaps and needs for Pacific saury stock assessment
- ✓ Other matters
- ✓ Workload till SSC PS13 and PS14
- ✓ Close of the Meeting

Day 1					
Hybrid section	In-person section				
9:00-12:00	13:30-17:00				

Day 2					
Hybrid section	In-person section				
9:00-12:00	13:30-17:00				

Day 3					
Hybrid section	In-person section				
9:00-12:00	13:30-17:00				

- Revisit and improve annual models (Step 16-17 models)
- Introduce seasonal model from revised annual model (Step 18 models)
- Diagnostics of Step 18 models

- Revisit and improve annual models (Step 16-17 models)
- Introduce seasonal model from revised annual model (Step 18 models)
- Diagnostics of Step 18 models

Step 16 model

Cohort life span

- Annual model with seasonal sub-structure, but age & growth are not independent of calendar time
- Age-0 cohort appears in age structure in Season 3, advances to age 1 on January 1st
- One discrete spawning event per year
- Spawning occurs in February (Season 1) → a cohort spawns only once per lifetime (~5 percent of cohort, proportion in bottom right figure, dashed line)
- The spawning component is a small fraction of total biomass
 (≈0.07)

Step 16 model

Fishery dynamics

- Fishery operates in the second half of the year
- Age 0 is specified to be invulnerable
- Cohort spawns before any vulnerability to fishing → Fishing has little to no impact on spawning potential ratio

Lifespan of cohort:

	Yea Ag	ar 1 e 0		Year 2 Age 1			
Season 1	1		Season 4	Season 1	1		Season 4
Does not exist in age structure	age structure	Settlement, mean length = 1 cm (Month 7)		Spawning, ~5 % of cohort (Month 2)		,	- Full vulnerability to fishery

Major updates

- Allow fishery vulnerability at age-0 (ageselex option 0 instead of 10), partial age-0 vulnerability informed by length comp and selectivity-at-length
- Re-weight multinomial likelihoods for size composition with McAllister-lanelli method
- Updated seasonal catches from 2023 data update (some catches in season 2. In Step 16, annual catches were evenly divided between seasons 3 and 4)

Step 17a: Change aggregation of size data

- SS3 can fit size composition data by month but difficult to visually compare fits
- Step 17 with size composition aggregated by season

Step 17b: Change maturity and spawning dynamics

- Step 17a with 2 spawning events per cohort
- With annual model, spawn timing must occur between July 1 December 31
- Specify spawn timing = 12.999 (December 31st)
- Proportion mature is 0.30 at age 0, 1 at age 1 (Table 4, NPFC-2021-SSC PS07-WP03).

- Stock size is very sensitive to model structure
- Changes in age-0 selectivity and maturity/spawning dynamics results in larger spawning/total biomass ratio
- However, there is a mis-match between spawn timing, occurring at the end of the cohort lifetime (end of calendar year) instead of middle of the calendar year
- A seasonal model is needed to replicate the protracted spawning behaviour of the species

Bio all • SpawnBio

- Step 17b still has poor fit to size composition. With asymptotic selectivity, model predicts more postspawning fish than observed
- Model appears insufficiently flexible to model variability in size composition

- Revisit and improve annual models (Step 16-17 models)
- Introduce seasonal model from revised annual model (Step 18 models)
- Diagnostics of Step 18 models

Structural features of seasonal models

- Seasons are independent time steps, with conversion to year/season after model fit
- Seasonal model removes relationship between growth of cohort and calendar time
- Growth is measured in time since settlement of seasonal cohort in the age structure
- Spawning can occur multiple times per calendar year (not possible with annual model), may be better representation of protracted spawning of Pacific saury
- Seasonality in recruitment can be modeled in SS3, i.e., no recruitment in season 3
- Stock-recruit relationship & equilibrium quantities related to seasonal recruitment

Seasonal model

Lifespan of cohorts (Step 18)

		Year 1				Year 2				Year 3		
	Season 1	Season 2	Season 3	Season 4	Season 1	Season 2	Season 3	Season 4	Season 1	Season 2	Season 3	Season 4
Season 1									Age 7 (plus	Age 7 (plus	Age 7 (plus	Age 7 (plus
cohort	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	group)	group)	group)	group)
Season 2												
cohort		Age 0	Age 1	Age 2								
Season 3												
cohort												
Season 4												
cohort				Age 0	Age 1	Age 2						

- Recruitment in seasons 1, 2, and 4, lifespan of each cohort is 8 seasons (dark green)
- Compared to annual model, fishery and survey dynamics unchanged with respect to calendar time
- Growth is calculated with respect to age since settlement (appearance in age structure), not related to calendar year
- Maturity is predicted from ogive (length-based values converted to age-based values)
- Cohort spawns approximately 6 times with proportions according to ogive (model predicts zero recruitment in season 3)

Seasonal model

Lifespan of cohorts (Step 18)

		Year 1				Year 2			Year 3			
	Season 1	Season 2	Season 3	Season 4	Season 1	Season 2	Season 3	Season 4	Season 1	Season 2	Season 3	Season 4
Season 1									Age 7 (plus	Age 7 (plus	Age 7 (plus	Age 7 (plus
cohort	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	group)	group)	group)	group)
Season 2							A = 7					
cohort		Age 0	Age 1	Age 2								
Season 3												
cohort												
Season 4												
cohort				Age 0	Age 1	Age 2						

Biomass comparison

- Seasonal model improves fit to size composition

Step18a: Fix hyperstability parameter = 0

- CPUE of Late JPN, KOR, RUS, CHN, are representative of stock trends
- Random walk of Early JPN, CT catchability remains

Step18b: Estimate steepness

Step 18 stock-recruit relationship

- Residual trend in recruitment deviations with estimated steepness is somewhat improved
- The steepness estimate in Step18b is 0.54 (compared to 0.82 in all other models)

- Revisit and improve annual models (Step 16-17 models)
- Introduce seasonal model from revised annual model (Step 18 models)
- Diagnostics of Step 18 models

Step18 fit to indices

- Retrospective peel by calendar year (intervals of 4 seasonal time steps)
- <u>Top figure:</u> Positive Mohn's rho with divergence at end of SSB time series: unfished stock size (R0) is consistently estimated but terminal year recruitment is not.
- Bottom figure: Inconsistent recruitment deviations in retrospective figure suggests that they should not be estimated in the last calendar year. Or we need to improve the fit to the age-0 JPN index
- Due to short lifespan, model likely cannot forecast more than one year
- Current model structure cannot be used for forecasting. Good forecast skill dependent on fit to age-0 survey index

Profile

0.3

0.4

0.5

0.7

0.6

Steepness

8.0

0.9

Step 19:

- Change timing of JPN survey to season 3. Change age 0 selectivity to capture Season 4 of previous year, Season 1 cohort of this year (> 15 cm)
- Add 2024 catch from NPFC-2025-SSC PS15-WP01
- Step 19a: Exclude early-JPN and CT CPUE
- Step 19b: Exclude all CPUE
- Step 19c: Seasonal M for post-spawning mortality
- Step 20: Start year in 1994

	Year 1		Year 2			Year 3				Year 4
	Season 4	Season 1	Season 2	Season 3	Season 4	Season 1	Season 2	Season 3	Season 4	Season 1
Season 4	Seasonal								Age 7 (plus	Age 7 (plus
cohort	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	group)	group)
Season 1										Age 7 (plus
cohort		Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	group)
Season 2										
cohort			Age 0	Age 1	Age 2	Age 3				
Season 3										
cohort										

Figures: proportion of recruitment settlement by calendar year,

**not cohort year **

Seasonal M for post-spawning mortality

Step 19: Change timing/sel JPN survey, add 2024 catch (all CPUE)

Step 19a: Exclude early-JPN and CT CPUE

Step 19b: Exclude all CPUE

Step 19c: Seasonal M for post-spawning mortality (all CPUE)

Step 20: Start year in 1994 (all CPUE)

Step 19a: Exclude early-JPN and CT CPUE

Step 19b: Exclude all CPUE

Step 19c: Seasonal M for post-spawning mortality (all CPUE)

Step 20: Start year in 1994 (all CPUE)

How to explain the reduction of body size?

Step 19a: Exclude early-JPN and CT CPUE

Step 19b: Exclude all CPUE

Step 19c: Seasonal M for post-spawning mortality (all CPUE)

Step 20: Start year in 1994 (all CPUE)

Additional sensitivity cases:

- <u>Distribution shift:</u> Change from logistic to dome shaped selectivity (time block) to explain population shift to NE Pacific (fishery and survey escapement)
- Depletion of large fish: Change in selectivity, but remains logistic
- Reduction in body size: Time-varying growth (need annual length-age data by seasonal age)

- Step 19: Change timing/sel JPN survey, add 2024 catch (all CPUE)
- Step 21a: Distribution hypothesis: Change in selectivity (new sel is dome)
- Step 21b: Targeting hypothesis: Change in selectivity (new sel is logistic)
- Step 21c: Change in growth

- Step 19: Change timing/sel JPN survey, add 2024 catch (all CPUE)
- Step 21a: Distribution hypothesis: change in selectivity (new sel is dome)
- Step 21b: Change in selectivity (new sel is logistic)
- Step 21c: Change in growth

Step 21a: Distribution hypothesis: change in selectivity (new sel is dome)

Step 21b: Fishery targeting: Change in selectivity (new sel is logistic)

Step 21c: Change in growth

Stock depletion alone cannot explain decrease in mean size. Due to increasing age-0 index, the model sees increasing recruitment

<u>Summary</u>

- The seasonal SS models are able to model the fishery and population dynamics of Pacific saury more plausibly than annual models.
- The model primarily estimated stock size from the Japanese survey.
- Model diagnostics (retro analysis, hindcasting) indicated the model can not be used for projection at this stage. However, improved fit the Japanese survey in recent years might solve these problems.
- Several hypotheses were developed to explain the trend of fishery mean size during recent years, and it will be important to decide which are most likely.
- The base and sensitivity scenarios will likely be revision of models presented at the WG NSAM02 meeting, based on diagnostic results and biological plausibility.

Some key model specifications for Step-19 and other options for future candidate cases

Model specification	Step-19	Other options	Comments and Decisions
Data	Length comps only	Conditional age-at-length/ALK	Confirmed with KOR on size comps sampling/data issue
Starting year	1980	1994	
Time step	Seasonal	annual	Seasonal model is prioritized
Spatial considerations	None	Fleets as areas	divide CT or JPN fleets by season (easiest) see NPFC-2024-SSC PS14- WP13 (Future work)
Fleet structure	All CPUE	Exclude JPN-early and CT Exclude all CPUE	Explore Seasonal CPUE indices (include both Member-specific CPUE and joint CPUE, be careful about specification on selectivity when using joint CPUE)
Survey indices and selectivity	Age-specific indices with age- based selectivity	Age-aggregated indices with size- based selectivity	Need to incorporate survey size comps and check VAST estimates
Fishery Selectivity	Asymptotic selectivity for fisheries	Change from logistic to dome- shaped selectivity (time-block)	

		2. Time-varying logistic selectivity	
Catchability	non-linear q	Check the plausibility of q estimate for survey index	Failed to estimate one exponent for all CPUE
Variance weighting (size comps)	McAllister-Ianelli method	Fishery length comps downweighted	Need to incorporate survey size comps
Natural mortality	Constant	Seasonal M for post-spawning mortality	
Growth	Approximate Gompertz	Explore time-varying growth	Need to confirm with biologists about seasonal pattern and mean size at age over time
Maturity	Length logistic inflection ~ 26 cm		update with suggestions by Japan (Dr. Fuji)
Steepness	Fixed (0.82)	Estimated with MCMC	

Date	Meeting	Objective
July 11-13	WG NSAM 2025-02	 Review and update intersessional modeling work Identify key uncertainties in assessment Check diagnostic analysis results and biological plausibility Establish preliminary candidate case scenarios
Sept. 01-05	SSC PS15	 Report the modeling progress from WG NSAM 2025-02 Obtain the latest fishery, CPUE (Member-specifc CPUE and joint CPUE) and survey data (include size comps) from Members Check ALKs and VAST estimates Confirmation with biologists (growth, maturity, spawning timing, etc.)
TBD (2 days in Nov.?)	WG NSAM 2025-03	 Update model specification for all case scenarios Identify base and sensitivity cases based on diagnostic analysis results and biological plausibility Draft a stock assessment report and make recommendations for review by the SSC PS Try to incorporate environmental covariate in key population/fishery processes (low priority)
Dec. 11-14	SSC PS16	 Review the first stock assessment report of age-structured models Compare the assessment results of SS and BSSPM

2:

<u>Acknowledgements</u>

- External experts (Dr. Larry Jacobson and Dr. Quang Huynh)
- SWG NSAM
- Biologists
- Secretariat

Thank you!